Integrating UAS Remote Sensing and Edge Detection for Accurate Coal Stockpile Volume Estimation
2025
Sandeep Dhakal | Ashish Manandhar | Ajay Shah | Sami Khanal
Accurate stockpile volume estimation is essential for industries that manage bulk materials across various stages of production. Conventional ground-based methods such as walking wheels, total stations, Global Navigation Satellite Systems (GNSSs), and Terrestrial Laser Scanners (TLSs) have been widely used, but often involve significant safety risks, particularly when accessing hard-to-reach or hazardous areas. Unmanned Aerial Systems (UASs) provide a safer and more efficient alternative for surveying irregularly shaped stockpiles. This study evaluates UAS-based methods for estimating the volume of coal stockpiles at a storage facility near Cadiz, Ohio. Two sensor platforms were deployed: a Freefly Alta X quadcopter equipped with a Real-Time Kinematic (RTK) Light Detection and Ranging (LiDAR, active sensor) and a WingtraOne UAS with Post-Processed Kinematic (PPK) multispectral imaging (optical, passive sensor). Three approaches were compared: (1) LiDAR: (2) Structure-from-Motion (SfM) photogrammetry with a Digital Surface Model (DSM) and Digital Terrain Model (DTM) (SfM&ndash:DTM): and (3) an SfM-derived DSM combined with a kriging-interpolated DTM (SfM&ndash:intDTM). An automated boundary detection workflow was developed, integrating slope thresholding, Near-Infrared (NIR) spectral filtering, and Canny edge detection. Volume estimates from SfM&ndash:DTM and SfM&ndash:intDTM closely matched LiDAR-based reference estimates, with Root Mean Square Error (RMSE) values of 147.51 m3 and 146.18 m3, respectively. The SfM&ndash:intDTM approach achieved a Mean Absolute Percentage Error (MAPE) of ~2%, indicating strong agreement with LiDAR and improved accuracy compared to prior studies. A sensitivity analysis further highlighted the role of spatial resolution in volume estimation. While RMSE values remained consistent (141&ndash:162 m3) and the MAPE below 2.5% for resolutions between 0.06 m and 5 m, accuracy declined at coarser resolutions, with the MAPE rising to 11.76% at 10 m. This emphasizes the need to balance the resolution with the study objectives, geographic extent, and computational costs when selecting elevation data for volume estimation. Overall, UAS-based SfM photogrammetry combined with interpolated DTMs and automated boundary extraction offers a scalable, cost-effective, and accurate approach for stockpile volume estimation. The methodology is well-suited for both the high-precision monitoring of individual stockpiles and broader regional-scale assessments and can be readily adapted to other domains such as quarrying, agricultural storage, and forestry operations.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Multidisciplinary Digital Publishing Institute