خيارات البحث
النتائج 11 - 20 من 657
Quantitative methods to study protein arginine methyltransferase 1-9 activity in cells النص الكامل
2021
Szewczyk, Magdalena M. | Vu, Victoria | Barsyte, Dalia
Protein methyltransferases (PRMTs) catalyze the transfer of a methyl group to arginine residues of substrate proteins. The PRMT family consists of nine members that can monomethylate or symmetrically/asymmetrically dimethylate arginine residues. Several antibodies recognizing different types of arginine methylation of various proteins are available; thus, providing tools for the development of PRMT activity biomarker assays. PRMT antibody-based assays are challenging due to overlapping substrates and motif-based antibody specificities. These issues and the experimental setup to investigate the arginine methylation contributed by individual PRMTs are discussed. Through the careful selection of the representative substrates that are biomarkers for eight out of nine PRMTs, a panel of PRMT activity assays were designed. Here, the protocols for cellular assays quantitatively measuring the enzymatic activity of individual members of the PRMT family in cells are reported. The advantage of the described methods is their straightforward performance in any lab with cell culture and fluorescent western blot capabilities. The substrate specificity and chosen antibody reliability were fully validated with knockdown and overexpression approaches. In addition to detailed guidelines of the assay biomarkers and antibodies, information on the use of an inhibitor tool compound collection for PRMTs is also provided.
اظهر المزيد [+] اقل [-]Artificial intelligence approaches to assessing primary cilia النص الكامل
2021
Bansal, Ruchi | Engle, Staci E. | Kamba, Tisianna K. | Brewer, Kathryn M. | Lewis, Wesley R. | Berbari, Nicolas F.
Cilia are microtubule based cellular appendages that function as signaling centers for a diversity of signaling pathways in many mammalian cell types. Cilia length is highly conserved, tightly regulated, and varies between different cell types and tissues and has been implicated in directly impacting their signaling capacity. For example, cilia have been shown to alter their lengths in response to activation of ciliary G protein-coupled receptors. However, accurately and reproducibly measuring the lengths of numerous cilia is a time-consuming and labor-intensive procedure. Current approaches are also error and bias prone. Artificial intelligence (Ai) programs can be utilized to overcome many of these challenges due to capabilities that permit assimilation, manipulation, and optimization of extensive data sets. Here, we demonstrate that an Ai module can be trained to recognize cilia in images from both in vivo and in vitro samples. After using the trained Ai to identify cilia, we are able to design and rapidly utilize applications that analyze hundreds of cilia in a single sample for length, fluorescence intensity and co-localization. This unbiased approach increased our confidence and rigor when comparing samples from different primary neuronal preps in vitro as well as across different brain regions within an animal and between animals. Moreover, this technique can be used to reliably analyze cilia dynamics from any cell type and tissue in a high-throughput manner across multiple samples and treatment groups. Ultimately, Ai-based approaches will likely become standard as most fields move toward less biased and more reproducible approaches for image acquisition and analysis.
اظهر المزيد [+] اقل [-]Injectable supramolecular polymer-nanoparticle hydrogels for cell and drug delivery applications النص الكامل
2021
Meis, Catherine M. | Grosskopf, Abigail K. | Correa, Santiago | Appel, Eric A.
These methods describe how to formulate injectable, supramolecular polymer-nanoparticle (PNP) hydrogels for use as biomaterials. PNP hydrogels are composed of two components: hydrophobically modified cellulose as the network polymer and self-assembled core-shell nanoparticles that act as non-covalent cross linkers through dynamic, multivalent interactions. These methods describe both the formation of these self-assembled nanoparticles through nanoprecipitation as well as the formulation and mixing of the two components to form hydrogels with tunable mechanical properties. The use of dynamic light scattering (DLS) and rheology to characterize the quality of the synthesized materials is also detailed. Finally, the utility of these hydrogels for drug delivery, biopharmaceutical stabilization, and cell encapsulation and delivery is demonstrated through in vitro experiments to characterize drug release, thermal stability, and cell settling and viability. Due to its biocompatibility, injectability, and mild gel formation conditions, this hydrogel system is a readily tunable platform suitable for a range of biomedical applications.
اظهر المزيد [+] اقل [-]Isolation and time-lapse imaging of primary mouse embryonic palatal mesenchyme cells to analyze collective movement attributes النص الكامل
2021
Goering, Jeremy P. | Isai, Dona Greta | Czirok, Andras | Saadi, Irfan
Development of the palate is a dynamic process, which involves vertical growth of bilateral palatal shelves next to the tongue followed by elevation and fusion above the tongue. Defects in this process lead to cleft palate, a common birth defect. Recent studies have shown that palatal shelf elevation involves a remodeling process that transforms the orientation of the shelf from a vertical to a horizontal one. The role of the palatal shelf mesenchymal cells in this dynamic remodeling has been difficult to study. Time-lapse-imaging-based quantitative analysis has been recently used to show that primary mouse embryonic palatal mesenchymal (MEPM) cells can self-organize into a collective movement. Quantitative analyses could identify differences in mutant MEPM cells from a mouse model with palate elevation defects. This paper describes methods to isolate and culture MEPM cells from E13.5 embryos-specifically for time-lapse imaging-and to determine various cellular attributes of collective movement, including measures for stream formation, shape alignment, and persistence of direction. It posits that MEPM cells can serve as a proxy model for studying the role of palatal shelf mesenchyme during the dynamic process of elevation. These quantitative methods will allow investigators in the craniofacial field to assess and compare collective movement attributes in control and mutant cells, which will augment the understanding of mesenchymal remodeling during palatal shelf elevation. Furthermore, MEPM cells provide a rare mesenchymal cell model for investigation of collective cell movement in general.
اظهر المزيد [+] اقل [-]15n cpmg relaxation dispersion for the investigation of protein conformational dynamics on the µs-ms timescale النص الكامل
2021
Singh, Aayushi | Purslow, Jeffrey A. | Venditti, Vincenzo
Protein conformational dynamics play fundamental roles in regulation of enzymatic catalysis, ligand binding, allostery, and signaling, which are important biological processes. Understanding how the balance between structure and dynamics governs biological function is a new frontier in modern structural biology and has ignited several technical and methodological developments. Among these, CPMG relaxation dispersion solution NMR methods provide unique, atomic-resolution information on the structure, kinetics, and thermodynamics of protein conformational equilibria occurring on the µs-ms timescale. Here, the study presents detailed protocols for acquisition and analysis of a 15N relaxation dispersion experiment. As an example, the pipeline for the analysis of the µs-ms dynamics in the C-terminal domain of bacteria Enzyme I is shown.
اظهر المزيد [+] اقل [-]Whole-mount staining, visualization, and analysis of fungiform, circumvallate, and palate taste buds النص الكامل
2021
Ohman, Lisa C. | Krimm, Robin F.
Taste buds are collections of taste-transducing cells specialized to detect subsets of chemical stimuli in the oral cavity. These transducing cells communicate with nerve fibers that carry this information to the brain. Because taste-transducing cells continuously die and are replaced throughout adulthood, the taste-bud environment is both complex and dynamic, requiring detailed analyses of its cell types, their locations, and any physical relationships between them. Detailed analyses have been limited by tongue-tissue heterogeneity and density that have significantly reduced antibody permeability. These obstacles require sectioning protocols that result in splitting taste buds across sections so that measurements are only approximated, and cell relationships are lost. To overcome these challenges, the methods described herein involve collecting, imaging, and analyzing whole taste buds and individual terminal arbors from three taste regions: fungiform papillae, circumvallate papillae, and the palate. Collecting whole taste buds reduces bias and technical variability and can be used to report absolute numbers for features including taste-bud volume, total taste-bud innervation, transducing-cell counts, and the morphology of individual terminal arbors. To demonstrate the advantages of this method, this paper provides comparisons of taste bud and innervation volumes between fungiform and circumvallate taste buds using a general taste-bud marker and a label for all taste fibers. A workflow for the use of sparse-cell genetic labeling of taste neurons (with labeled subsets of taste-transducing cells) is also provided. This workflow analyzes the structures of individual taste-nerve arbors, cell type numbers, and the physical relationships between cells using image analysis software. Together, these workflows provide a novel approach for tissue preparation and analysis of both whole taste buds and the complete morphology of their innervating arbors.
اظهر المزيد [+] اقل [-]Mechanical separation and protein solubilization of the outer and inner perivitelline sublayers from hen's eggs النص الكامل
2021
Bregeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie
Mechanical separation and protein solubilization of the outer and inner perivitelline sublayers from hen's eggs النص الكامل
2021
Bregeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie
The perivitelline layer that surrounds the egg yolk plays a fundamental role in fertilization, in egg defense, and in the development of the avian embryo. It is formed by two proteinaceous sublayers that are tightly associated and formed by distinct female reproductive organs. Both structures are assumed to have their own functional specificities, which remain to be defined. To characterize the function of proteins composing each sublayer, the first challenge is to establish the conditions that would allow for the mechanical separation of these two intricate layers, while limiting any structural damage. The second step is to optimize the experimental conditions to facilitate protein solubilization from these two sublayers, for subsequent biochemical analyses. The efficiency of this approach is assessed by analyzing the protein profile of each sublayer by Sodium Dodecyl Sulfate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE), which is expected to be distinct between the two structures. This two-step procedure remains simple; it requires classical biochemical equipment and reagents; and is compatible with further in-depth proteomics. It may also be transposed to other avian eggs for comparative biology, knowing that the structure and the composition of the perivitelline layer has been shown to have species-specific features. In addition, the non-denaturing conditions developed for sublayers separation (step 1) allow their structural analyses by scanning and transmission electron microscopy. It may also constitute the initial step for subsequent protein purification to analyze their respective biological activities and 3D structure, or to perform further immunohistochemical or functional analyses. Such studies would help to decipher the physiological function of these two sublayers, whose structural and functional integrities are determinant criteria of the reproductive success.
اظهر المزيد [+] اقل [-]Mechanical Separation and Protein Solubilization of the Outer and Inner Perivitelline Sublayers from Hen's Eggs النص الكامل
2021
Brégeon, Mégane | Guyot, Nicolas | Réhault-Godbert, Sophie | Biologie des Oiseaux et Aviculture (BOA) ; Université de Tours (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work received a financial support from The French National Research Agency (EQLIPSE, ANR-19-CE21-0006). | ANR-19-CE21-0006,EQLIPSE,Amélioration de la qualité et des défenses antimicrobiennes internes de l'oeuf(2019)
International audience | The perivitelline layer that surrounds the egg yolk plays a fundamental role in fertilization, in egg defense, and in the development of the avian embryo. It is formed by two proteinaceous sublayers that are tightly associated and formed by distinct female reproductive organs. Both structures are assumed to have their own functional specificities, which remain to be defined. To characterize the function of proteins composing each sublayer, the first challenge is to establish the conditions that would allow for the mechanical separation of these two intricate layers, while limiting any structural damage. The second step is to optimize the experimental conditions to facilitate protein solubilization from these two sublayers, for subsequent biochemical analyses. The efficiency of this approach is assessed by analyzing the protein profile of each sublayer by Sodium Dodecyl Sulfate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE), which is expected to be distinct between the two structures. This two-step procedure remains simple; it requires classical biochemical equipment and reagents; and is compatible with further in-depth proteomics. It may also be transposed to other avian eggs for comparative biology, knowing that the structure and the composition of the perivitelline layer has been shown to have species-specific features. In addition, the non-denaturing conditions developed for sublayers separation (step 1) allow their structural analyses by scanning and transmission electron microscopy. It may also constitute the initial step for subsequent protein purification to analyze their respective biological activities and 3D structure, or to perform further immunohistochemical or functional analyses. Such studies would help to decipher the physiological function of these two sublayers, whose structural and functional integrities are determinant criteria of the reproductive success.
اظهر المزيد [+] اقل [-]In Ovo feeding of commercial broiler eggs: an accurate and reproducible method to affect muscle development and growth النص الكامل
2021
Alcocer, Hanna M. | Xu, Xiaoxing | Gravely, Morgan E. | Gonzalez, John M.
Within the past three decades, red meat and poultry scientists focused on developing strategies and technologies to manipulate muscle development during embryonic and fetal development. This area continues to be an area of focus because muscle fiber number is established during this time and determines the basis for all future growth. In poultry, numerous studies demonstrated in ovo feeding of growth factors, vitamins, or other nutrients improved chick embryonic muscle and intestinal development. Improving in ovo muscle development could benefit the poultry industry by possibly influencing meat yield, growth rate, or myopathy conditions. During the past five years, the Gonzalez Laboratory at the University of Georgia developed a nicotinamide riboside in ovo feeding methodology for broiler-chicken embryos, which altered muscle development. When injected into a developing embryo's yolk sac, nicotinamide riboside increased pectoralis major muscle weight and muscle fiber density at hatch. This protocol will demonstrate a methodology to accurately and reproducibly conduct in ovo feeding studies utilizing commercial standard- and high-yielding broiler embryos. These data and methods will allow other research groups to perform in ovo feeding studies with much success and reproducibility.
اظهر المزيد [+] اقل [-]Onepot pure cell-free system النص الكامل
2021
Grasemann, Laura | Lavickova, Barbora | Elizondo-Cantú, M Carolina | Maerkl, Sebastian J.
The defined PURE (protein synthesis using recombinant elements) transcription-translation system provides an appealing chassis for cell-free synthetic biology. Unfortunately, commercially available systems are costly, and their tunability is limited. In comparison, a home-made approach can be customized based on user needs. However, the preparation of home-made systems is time-consuming and arduous due to the need for ribosomes as well as 36 medium scale protein purifications. Streamlining protein purification by coculturing and co-purification allows for minimizing time and labor requirements. Here, we present an easy, adjustable, time- and cost-effective method to produce all PURE system components within 1 week, using standard laboratory equipment. Moreover, the performance of the OnePot PURE is comparable to commercially available systems. The OnePot PURE preparation method expands the accessibility of the PURE system to more laboratories due to its simplicity and cost-effectiveness.
اظهر المزيد [+] اقل [-]Evaluation of motor impairment in C. elegans models of amyotrophic lateral sclerosis النص الكامل
2021
Currey, Heather N. | Liachko, Nicole F.
The neurodegenerative disease amyotrophic lateral sclerosis (ALS) features progressive loss of motor neurons accompanied by muscle weakness and motor impairment that worsens with time. While considerable advances have been made in determining genetic drivers of ALS for a subset of patients, the majority of cases have an unknown etiology. Further, the mechanisms underlying motor neuron dysfunction and degeneration are not well understood; therefore, there is an ongoing need to develop and characterize representative models to study these processes. Caenorhabditis elegans can adapt their movement to the physical constraints of their surroundings, with two primary movement paradigms studied in a laboratory environment- crawling on a solid surface and swimming in liquid. These represent a complex interplay between sensation, motor neurons, and muscles. C. elegans models of ALS can exhibit impairment in one or both of these movement paradigms. This protocol describes two sensitive assays for evaluating motility in C. elegans: an optimized radial locomotion assay measuring crawling on a solid surface and an automated method for tracking and analyzing swimming in liquid (thrashing). In addition to the characterization of baseline motor impairment of ALS models, these assays can detect suppression or enhancement of the phenotypes from genetic or small molecule interventions. Thus, these methods have utility for studying ALS models and any C. elegans strain that exhibits altered motility.
اظهر المزيد [+] اقل [-]