خيارات البحث
النتائج 41 - 50 من 657
Micromechanical tension testing of additively manufactured 17-4 ph stainless steel specimens النص الكامل
2021
Gonzalez-Nino, David | Sonntag, Steve | Afshar-Mohajer, Mahyar | Goss, Josh | Zou, Min | Prinz, Gary S.
This study presents a methodology for the rapid fabrication and micro-tensile testing of additively manufactured (AM) 17-4PH stainless steels by combining photolithography, wet-etching, focused ion beam (FIB) milling, and modified nanoindentation. Detailed procedures for proper sample surface preparation, photo-resist placement, etchant preparation, and FIB sequencing are described herein to allow for high throughput (rapid) specimen fabrication from bulk AM 17-4PH stainless steel volumes. Additionally, procedures for the nano-indenter tip modification to allow tensile testing are presented and a representative micro specimen is fabricated and tested to failure in tension. Tensile-grip-to-specimen alignment and sample engagement were the main challenges of the micro-tensile testing; however, by reducing the indenter tip dimensions, alignment and engagement between the tensile grip and specimen were improved. Results from the representative micro-scale in situ SEM tensile test indicate a single slip plane specimen fracture (typical of a ductile single crystal failure), differing from macro-scale AM 17-4PH post-yield tensile behavior.
اظهر المزيد [+] اقل [-]The automated crystallography pipelines at the embl htx facility in grenoble النص الكامل
2021
Cornaciu, Irina | Bourgeas, Raphael | Hoffmann, Guillaume | Dupeux, Florine | Humm, Anne-Sophie | Mariaule, Vincent | Pica, Andrea | Clavel, Damien | Seroul, Gael | Murphy, Peter | Márquez, José Antonio
EMBL Grenoble operates the High Throughput Crystallization Laboratory (HTX Lab), a large-scale user facility offering high throughput crystallography services to users worldwide. The HTX lab has a strong focus in the development of new methods in macromolecular crystallography. Through the combination of a high throughput crystallization platform, the CrystalDirect technology for fully automated crystal mounting and cryocooling and the CRIMS software we have developed fully automated pipelines for macromolecular crystallography that can be remotely operated over the internet. These include a protein-to-structure pipeline for the determination of new structures, a pipeline for the rapid characterization of protein-ligand complexes in support of medicinal chemistry, and a large-scale, automated fragment screening pipeline enabling evaluation of libraries of over 1000 fragments. Here we describe how to access and use these resources.
اظهر المزيد [+] اقل [-]Development and evaluation of 3d-printed cardiovascular phantoms for interventional planning and training النص الكامل
2021
Grab, Maximilian | Hopfner, Carina | Gesenhues, Alena | König, Fabian | Haas, Nikolaus A. | Hagl, Christian | Curta, Adrian | Thierfelder, Nikolaus
Catheter-based interventions are standard treatment options for cardiovascular pathologies. Therefore, patient-specific models could help training physicians' wire-skills as well as improving planning of interventional procedures. The aim of this study was to develop a manufacturing process of patient-specific 3D-printed models for cardiovascular interventions. To create a 3D-printed elastic phantom, different 3D-printing materials were compared to porcine biological tissues (i.e., aortic tissue) in terms of mechanical characteristics. A fitting material was selected based on comparative tensile tests and specific material thicknesses were defined. Anonymized contrast-enhanced CT-datasets were collected retrospectively. Patient-specific volumetric models were extracted from these datasets and subsequently 3D-printed. A pulsatile flow loop was constructed to simulate the intraluminal blood flow during interventions. Models' suitability for clinical imaging was assessed by x-ray imaging, CT, 4D-MRI and (Doppler) ultrasonography. Contrast medium was used to enhance visibility in x-ray-based imaging. Different catheterization techniques were applied to evaluate the 3D-printed phantoms in physicians' training as well as for pre-interventional therapy planning. Printed models showed a high printing resolution (~30 µm) and mechanical properties of the chosen material were comparable to physiological biomechanics. Physical and digital models showed high anatomical accuracy when compared to the underlying radiological dataset. Printed models were suitable for ultrasonic imaging as well as standard x-rays. Doppler ultrasonography and 4D-MRI displayed flow patterns and landmark characteristics (i.e., turbulence, wall shear stress) matching native data. In a catheter-based laboratory setting, patient-specific phantoms were easy to catheterize. Therapy planning and training of interventional procedures on challenging anatomies (e.g., congenital heart disease (CHD)) was possible. Flexible patient-specific cardiovascular phantoms were 3D-printed, and the application of common clinical imaging techniques was possible. This new process is ideal as a training tool for catheter-based (electrophysiological) interventions and can be used in patient-specific therapy planning.
اظهر المزيد [+] اقل [-]Measuring the ph, redox chemistries, and degradative capacity of macropinosomes using dual-fluorophore ratiometric microscopy النص الكامل
2021
Wilkinson, Liam | Canton, Johnathan
In recent years, the field of macropinocytosis has grown rapidly. Macropinocytosis has emerged as a central mechanism by which innate immune cells maintain organismal homeostasis and immunity. Simultaneously, and in contrast to its homeostatic role, it can also drive various pathologies, including cancer and viral infections. Unlike other modes of endocytosis, the tools developed for studying the maturation of macropinosomes remain underdeveloped. Here the protocol describes newly developed tools for studying the redox environment within the lumen of early and maturing macropinosomes. Methodologies for using ratiometric fluorescence microscopy in assessing the pH, production of reactive oxygen species, and the degradative capacity within the lumen of individual macropinosomes in live cells are described. Single organelle measurements offer the advantage of revealing spatiotemporal heterogeneity, which is often lost with population-based approaches. Emphasis is placed on the basic principles of dual fluorophore ratiometric microscopy, including probe selection, instrumentation, calibration, and single-cell versus population-based methods.
اظهر المزيد [+] اقل [-]User-friendly, high-throughput, and fully automated data acquisition software for single-particle cryo-electron microscopy النص الكامل
2021
Anil Kumar, | P., Surekha | Gulati, Sahil | Dutta, Somnath
In the past several years, technological and methodological advancements in single-particle cryo-electron microscopy (cryo-EM) have paved a new avenue for the high-resolution structure determination of biological macromolecules. Despite the remarkable advances in cryo-EM, there is still scope for improvement in various aspects of the single-particle analysis workflow. Single-particle analysis demands a suitable software package for high-throughput automatic data acquisition. Several automatic data acquisition software packages were developed for automatic imaging for single-particle cryo-EM in the last eight years. This paper presents an application of a fully automated image acquisition pipeline for vitrified biomolecules under low-dose conditions. It demonstrates a software package, which can collect cryo-EM data fully, automatically, and precisely. Additionally, various microscopic parameters are easily controlled by this software package. This protocol demonstrates the potential of this software package in automated imaging of the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) spike protein with a 200 keV cryo-electron microscope equipped with a direct electron detector (DED). Around 3,000 cryo-EM movie images were acquired in a single session (48 h) of data collection, yielding an atomic-resolution structure of the spike protein of SARS-CoV-2. Furthermore, this structural study indicates that the spike protein adopts two major conformations, 1-RBD (receptor-binding domain) up open and all RBD down closed conformations.
اظهر المزيد [+] اقل [-]Expansion and enrichment of gamma-delta (γδ) t cells from apheresed human product النص الكامل
2021
Landin, Ana Marie | Cox, Cheryl | Yu, Bin | Bejanyan, Nelli | Dávila, Marco | Kelley, Linda
Although Vγ9Vδ2 T cells are a minor subset of T lymphocytes, this population is sought after for its ability to recognize antigens in a major histocompatibility complex (MHC)-independent manner and develop strong cytolytic effector function that makes it an ideal candidate for cancer immunotherapy. Due to the low frequency of Gamma-Delta (γδ) T cells in the peripheral blood, we developed an effective protocol to greatly expand a highly pure γδ T cells drug product for first-in-human use of allogeneic γδ T cells in patients with acute myeloid leukemia (AML). Using healthy donor apheresis as an allogenic cell source, the lymphocytes are isolated using a validated device for a counterflow centrifugation method of separating cells by size and density. The lymphocyte-rich fraction is utilized, and the γδ T cells are preferentially activated with zoledronic acid (FDA-approved) and interleukin (IL)-2 for 7 days. Following the preferential expansion of γδ T cells, a clinical-grade magnetic cell-separation device and TCRαβ beads are used to deplete contaminating T-cell receptor (TCR)αβ T cells. The highly enriched γδ T cells then undergo a second expansion using engineered artificial antigen-presenting cells (aAPCs) derived from K562 cells-genetically engineered to express single-chain variable fragment (scFv) for CD3 and CD28, 41BBL (CD137L) and IL15-RA-together with zoledronic acid and IL-2. Seeding all day-7 enriched γδ T cells in co-culture with the aAPCs facilitates the manufacture of highly pure γδ T cells with an average fold expansion of >229,000-fold from healthy donor blood.
اظهر المزيد [+] اقل [-]Measurement of insulin- and contraction-stimulated glucose uptake in isolated and incubated mature skeletal muscle from mice النص الكامل
2021
Kjøbsted, Rasmus | Kido, Kohei | Larsen, Jeppe K. | Jørgensen, Nicolas O. | Birk, Jesper B. | Hellsten, Ylva | Wojtaszewski, Jørgen F. P.
Skeletal muscle is an insulin-responsive tissue and typically takes up most of the glucose that enters the blood after a meal. Moreover, it has been reported that skeletal muscle may increase the extraction of glucose from the blood by up to 50-fold during exercise compared to resting conditions. The increase in muscle glucose uptake during exercise and insulin stimulation is dependent on the translocation of glucose transporter 4 (GLUT4) from intracellular compartments to the muscle cell surface membrane, as well as phosphorylation of glucose to glucose-6-phosphate by hexokinase II. Isolation and incubation of mouse muscles such as m. soleus and m. extensor digitorum longus (EDL) is an appropriate ex vivo model to study the effects of insulin and electrically-induced contraction (a model for exercise) on glucose uptake in mature skeletal muscle. Thus, the ex vivo model permits evaluation of muscle insulin sensitivity and makes it possible to match muscle force production during contraction ensuring uniform recruitment of muscle fibers during measurements of muscle glucose uptake. Moreover, the described model is suitable for pharmacological compound testing that may have an impact on muscle insulin sensitivity or may be of help when trying to delineate the regulatory complexity of skeletal muscle glucose uptake. Here we describe and provide a detailed protocol on how to measure insulin- and contraction-stimulated glucose uptake in isolated and incubated soleus and EDL muscle preparations from mice using radiolabeled [3H]2-deoxy-D-glucose and [14C]mannitol as an extracellular marker. This allows accurate assessment of glucose uptake in mature skeletal muscle in the absence of confounding factors that may interfere in the intact animal model. In addition, we provide information on metabolic viability of incubated mouse skeletal muscle suggesting that the method applied possesses some caveats under certain conditions when studying muscle energy metabolism.
اظهر المزيد [+] اقل [-]Plaquing of herpes simplex viruses النص الكامل
2021
Sadowski, Lauren A. | Lesko, Gregory M. | Suissa, Chad | Upadhyay, Rista | Desai, Prashant J. | Margulies, Barry J.
There are numerous published protocols for plaquing viruses, including references within primary literature for methodology. However, plaquing viruses can be difficult to perform, requiring focus on its specifications and refinement. It is an incredibly challenging method for new students to master, mainly because it requires meticulous attention to the most minute details. This demonstration of plaquing herpes simplex viruses should help those who have struggled with visualizing the method, especially its nuances, over the years. While this manuscript is based on the same principles of standard plaquing methodology, it differs in that it contains a detailed description of (1) how best to handle host cells to avoid disruption during the process, (2) a more useful viscous medium than agarose to limit the diffusion of virions, and (3) a simple fixation and staining procedure that produces reliably reproducible results. Furthermore, the accompanying video helps demonstrate the finer distinctions in the process, which are frequently missed when instructing others on conducting plaque assays.
اظهر المزيد [+] اقل [-]In vitro induction of human dental pulp stem cells toward pancreatic lineages النص الكامل
2021
Kuncorojakti, Suryo | Rodprasert, Watchareewan | Le, Quynh Dang | Osathanon, Thanaphum | Pavasant, Prasit | Sawangmake, Chenphop
As of 2000, the success of pancreatic islet transplantation using the Edmonton protocol to treat type I diabetes mellitus still faced some obstacles. These include the limited number of cadaveric pancreas donors and the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs) have been considered to be a potential candidate as an alternative source of islet-like cell generation. Our previous reports have successfully illustrated the establishment of induction protocols for differentiating human dental pulp stem cells (hDPSCs) to insulin-producing cells (IPCs). However, the induction efficiency varied greatly. In this paper, we demonstrate the comparison of hDPSCs pancreatic induction efficiency via integrative (microenvironmental and genetic manipulation) and non-integrative (microenvironmental manipulation) induction protocols for delivering hDPSC-derived IPCs (hDPSC-IPCs). The results suggest distinct induction efficiency for both the induction approaches in terms of 3-dimensional colony structure, yield, pancreatic mRNA markers, and functional property upon multi-dosage glucose challenge. These findings will support the future establishment of a clinically applicable IPCs and pancreatic lineage production platform.
اظهر المزيد [+] اقل [-]Isolation of active Caenorhabditis elegans nuclear extract and reconstitution for In Vitro transcription النص الكامل
2021
Wibisono, Phillip | Sun, Jingru
Caenorhabditis elegans has been an important model system for biological research since it was introduced in 1963. However, C. elegans has not been fully utilized in the biochemical study of biological reactions using its nuclear extracts such as in vitro transcription and DNA replication. A significant hurdle for using C. elegans in biochemical studies is disrupting the nematode's thick outer cuticle without sacrificing the activity of the nuclear extract. While several methods are used to break the cuticle, such as Dounce homogenization or sonication, they often lead to protein instability. There are no established protocols for isolating active nuclear proteins from larva or adult C. elegans for in vitro reactions. Here, the protocol describes in detail the homogenization of larval stage 4 C. elegans using a Balch homogenizer. The Balch homogenizer uses pressure to slowly force the animals through a narrow gap breaking the cuticle in the process. The uniform design and precise machining of the Balch homogenizer allow for consistent grinding of animals between experiments. Fractionating the homogenate obtained from the Balch homogenizer yields functionally active nuclear extract that can be used in an in vitro method for assaying transcription activity of C. elegans.
اظهر المزيد [+] اقل [-]