خيارات البحث
النتائج 1 - 2 من 2
Benefits of transgenic biofortified foods, a review from 2012 to 2022 | Beneficios de los alimentos transgénicos biofortificados, una revisión del 2012 al 2022
2022
Wilches Ortiz, Wilmar Alexander | Cruz Castiblanco, Ginna Natalia | Sandoval Cáceres, Yuly Paola
Biofortified transgenic foods contribute as a future, promising, innovative, profitable and sustainable tool to supply the need for micronutrients to a population without diverse diets by providing micronutrient alternatives. Major food crops are characterized by poor sources of micronutrients essential for human growth. The objective is to inform about the main biofortified transgenic foods with the potential to reduce hidden hunger. Search equations in English and bibliometric analysis of the terms transgenic foods and biofortification were used, finding a total of one thousand records, mainly the categories of cereals, vegetables, fruits and tubers. The reference source corresponds to the databases of the BAC (Agricultural Library of Colombia). The manuscript deals with aspects of the contribution of transgenic crops in biofortification. Success stories stand out, such as those of corn enriched in quality proteins in lysine and tryptophan, orange sweet potato rich in vitamin A. It expands on the different transgenic foods, especially vegetables, fruits, tubers and cereals, which supply the nutritional needs of the population. Transgenic foods have to face obstacles due to the limitations of acceptance among consumers and even governments, with different procedures and regulations for regulatory approval that are costly and slow. But their future potential stands out due to their ability to eliminate micronutrient malnutrition among billions of poor people, especially in developing countries with hidden hunger trends. | Los alimentos transgénicos biofortificados contribuyen como una herramienta futura, prometedora, innovadora, rentable y sostenible para suplir la necesidad de micronutrientes a una población sin dietas diversas brindando alternativas de micronutrientes. Los principales cultivos alimentarios se caracterizan por fuentes pobres de micronutrientes esenciales para el crecimiento humano. El objetivo es informar acerca de los principales alimentos transgénicos bioforticados con potencial para la reducción del hambre oculta. Se utilizaron ecuaciones de búsqueda en inglés y análisis bibliométrico de los términos alimentos transgénicos y biofortificación, encontrándose un total de mil registros principalmente se encontraron las categorías de cereales, vegetales, verduras, frutas y tubérculos. La fuente de consulta corresponde a las bases de datos de la BAC (Biblioteca Agropecuaria de Colombia). El manuscrito trata aspectos de la contribución de los cultivos transgénicos en la biofortificación. Se destacan casos de éxito como los del maíz enriquecido en proteínas de calidad en lisina y triptófano, el de batata naranja rica en vitamina A. Se amplia en los diferentes alimentos transgénicos, especialmente hortalizas, frutas, tubérculos y cereales, que suplen las necesidades nutricionales de la población. Los alimentos transgénicos tienen que enfrentar obstáculos debido a las limitaciones de aceptación entre los consumidores e incluso los gobiernos, con distintos procedimientos y normatividad de aprobación regulatoria que son costosos y lentos. Pero se destaca el potencial que tienen a futuro debido a su capacidad de eliminar la desnutrición de micronutrientes entre miles de millones de personas pobres, especialmente en los países en desarrollo que presentan tendencia al hambre oculta.
اظهر المزيد [+] اقل [-]Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana.
2007
Itoh, Takeshi | Tanaka, Tsuyoshi | Barrero, Roberto A. | Yamasaki, Chisato | Fujii, Yasuyuki | Hilton, Phillip B. | Antonio, Baltazar A. | Aono, Hideo | Apweiler, Rolf | Bruskiewich, Richard | Bureau, Thomas | Burr, Frances | Costa de Oliveira, Antonio | Fuks, Galina | Habara, Takuya | Haberer, Georg | Han, Bin | Harada, Erimi | Hiraki, Aiko T. | Hirochika, Hirohiko | Hoen, Douglas | Hokari, Hiroki | Hosokawa, Satomi | Hsing, Yue | Ikawa, Hiroshi | Ikeo, Kazuho | Imanishi, Tadashi | Ito, Yukiyo | Jaiswal, Pankaj | Kanno, Masako | Kawahara, Yoshihiro | Kawamura, Toshiyuki | Kawashima, Hiroaki | Khurana, Jitendra P. | Kikuchi, Shoshi | Komatsu, Setsuko | Koyanagi, Kanako O. | Kubooka, Hiromi | Lieberherr, Damien | Lin, Yao-Cheng | Lonsdale, David | Matsumoto, Takashi | Matsuya, Akihiro | McCombie, W. Richard | Messing, Joachim | Miyao, Akio | Mulder, Nicola | Nagamura, Yoshiaki | Nam, Jongmin | Namiki, Nobukazu | Numa, Hisataka | Nurimoto, Shin | O’Donovan, Claire | Ohyanagi, Hajime | Okido, Toshihisa | OOta, Satoshi | Osato, Naoki | Palmer, Lance E. | Quetier, Francis | Raghuvanshi, Saurabh | Saichi, Naomi | Sakai, Hiroaki | Sakai, Yasumichi | Sakata, Katsumi | Sakurai, Tetsuya | Sato, Fumihiko | Sato, Yoshiharu | Schoof, Heiko | Seki, Motoaki | Shibata, Michie | Shimizu, Yuji | Shinozaki, Kazuo | Shinso, Yuji | Singh, Nagendra K. | Smith-White, Brian | Takeda, Jun-ichi | Tanino, Motohiko | Tatusova, Tatiana | Thongjuea, Supat | Todokoro, Fusano | Tsugane, Mika | Tyagi, Akhilesh K. | Vanavichit, Apichart | Wang, Aihui | Wing, Rod A. | Yamaguchi, Kaori | Yamamoto, Mayu | Yamamoto, Naoyuki | Yu, Yeisoo | Zhang, Hao | Zhao, Qiang | Higo, Kenichi | Burr, Benjamin | Gojobori, Takashi | Sasaki, Takuji
We present here the annotation of the complete genome of riceOryza sativaL. ssp.japonicacultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ∼32,000, which is smaller than previous estimates. We conducted comparative analyses between rice andArabidopsis thalianaand found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene.
اظهر المزيد [+] اقل [-]