خيارات البحث
النتائج 1 - 5 من 5
Accuracy of isoflurane, halothane, and sevoflurane vaporizers during high oxygen flow and at maximum vaporizer dial setting
2011
Ambrisko, Tamas D. | Klide, Alan M.
Objective-To assess the accuracy of isoflurane, halothane, and sevoflurane vaporizers during high oxygen flow and at maximum dial settings at room temperature and to test sevoflurane vaporizers similarly during heating and at low-fill states. Sample-5 isoflurane, 5 halothane, and 5 sevoflurane vaporizers. Procedures-Vaporizers were tested at an oxygen flow of 10 L/min and maximum dial settings for 15 minutes under various conditions. All 3 vaporizer types were filled and tested at room temperature (21 degrees to 23 degrees C). Filled sevoflurane vaporizers were wrapped with circulating hot water (42 degrees C) blankets for 2 hours and tested similarly, and near-empty sevoflurane vaporizers were tested similarly at room temperature. During each 15-minute test period, anesthetic agent concentration was measured at the common gas outlet with a portable refractometer and temperature of the vaporizer wall was measured with a thermistor. Results-For each vaporizer type, anesthetic agent concentrations and vaporizer wall temperatures decreased during the 15-minute test period. Accuracy of isoflurane and halothane vaporizers remained within the recommended 20% (plus or minus) deviation from dial settings. Heated and room-temperature sevoflurane vaporizers were accurate to within 23% and 11.7% (plus or minus) of dial settings, respectively. Sevoflurane vaporizers at low-fill states performed similarly to vaporizers at full-fill states. Conclusions and Clinical Relevance-Under these study conditions, the isoflurane and halothane vaporizer models tested were accurate but the sevoflurane vaporizers were not. Sevoflurane vaporizer accuracy was not affected by fill state but may be improved with vaporizer heating; measurements of inspired anesthetic agent concentrations should be obtained during the use of heated vaporizers.
اظهر المزيد [+] اقل [-]Association between urine osmolality and specific gravity in dogs and the effect of commonly measured urine solutes on that association
2013
Ayoub, Jennifer A. | Beaufrere, Hugues | Acierno, Mark J.
Objective—To determine the association between urine osmolality and specific gravity (USG) in dogs and to evaluate the effect of commonly measured urine solutes on that association. Animals—60 dogs evaluated by an internal medicine service. Procedures—From each dog, urine was obtained by cystocentesis and USG was determined with a refractometer. The sample was divided, and one aliquot was sent to a diagnostic laboratory for urinalysis and the other was frozen at −80°C until osmolality was determined. Urine samples were thawed and osmolality was measured in duplicate with a freezing-point depression osmometer. The correlation between mean urine osmolality and USG was determined; the effect of pH, proteinuria, glucosuria, ketonuria, bilirubinuria, and hemoglobinuria on this relationship was investigated with multiple regression analysis. Results—The Pearson correlation coefficient between urine osmolality and USG was 0.87. The final multivariable regression model for urine osmolality included USG and the presence of ketones; ketonuria had a small negative association with urine osmolality. Conclusions and Clinical Relevance—Results indicated a strong linear correlation between osmolality and USG in urine samples obtained from dogs with various pathological conditions, and ketonuria had a small negative effect on that correlation.
اظهر المزيد [+] اقل [-]Evaluation of assay procedures for prediction of passive transfer status in lambs
2006
Massimini, G. | Peli, A. | Boari, A. | Britti, D.
Objective-To compare 4 assay procedures for prediction of passive transfer status in lambs. Animals-Thirty-one 1-day-old Sardinian lambs. Procedure-Serum IgG concentration was determined by use of single radial immunodiffusion. The following were determined: serum total protein concentration as measured by refractometry (ie, refractometry serum total protein concentration), serum total protein concentration as determined by the biuret method (ie, biuret method serum total protein concentration), serum gamma-globulin concentration as determined by serum protein electrophoresis, and serum gamma-glutamyltransferase (GGT) activity as measured by spectrophotometry. Accuracy of these assays for estimation of serum IgG concentration in 1-day-old lambs was established by use of linear regression analysis. Results-Refractometry serum total protein concentration, biuret method serum total protein concentration, and serum gamma-globulin concentration were closely and linearly correlated with serum IgG concentration. The natural logarithm (ln) of serum GGT activity was closely and linearly correlated with serum IgG concentration (ln). Refractometry serum total protein concentration, biuret method serum total protein concentration, and gamma-globulin concentration accounted for approximately 85%, 91%, and 95% of the variation in serum IgG concentration, respectively. Serum GGT activity (ln) accounted for approximately 92% of the variation in serum IgG concentration (ln). Conclusions and Clinical Relevance-For prediction of passive transfer status in 1-day-old lambs, serum GGT activity or biuret method serum total protein concentration determination will allow for passive transfer monitoring program development. Immediate refractometry serum total protein concentration determination is beneficial in making timely management and treatment decisions. Serum gamma-globulin concentration determination can be used as a confirmatory test.
اظهر المزيد [+] اقل [-]Evaluation of transmission infrared spectroscopy and digital and optical refractometers to identify low immunoglobulin G concentrations in alpaca serum
2017
Elsohaby, I | Burns, John J. | Riley, C. B. | McClure, J. T.
This study aimed to evaluate the digital Brix and optical serum total protein (STP) refractometers for measuring concentrations of serum immunoglobulin G (IgG) in alpacas and compare them to IgG concentrations measured by the reference method of radial immunodiffusion (RID) assay. The appropriate cutoff point for Brix and STP refractometers and the transmission infrared (TIR) spectroscopy method was determined for low IgG concentrations (< 10 g/L). Serum samples were collected from alpacas (N = 169) and tested by both refractometers. The correlation between Brix % and STP was high [correlation coefficient (r) = 0.99]. However, the correlation coefficients between Brix % and STP with serum RID-IgG concentrations were only 0.56 and 0.55, respectively. Twenty-one (12.4%) of 169 alpaca serum samples had IgG concentrations of < 10 g/L. Using receiver operator characteristic curve (ROC) analysis, the optimal cutoff points for the TIR assay, digital Brix, and optical STP refractometers for assessing low IgG (RID < 10 g/L) were 13 g/L, 8.8%, and 50 g/L, respectively. The TIR assay showed higher sensitivity (Se = 95.2%) and specificity (Sp = 96.8%) than either the digital Brix (Se = 90.5% and Sp = 65.5%) or optical STP (Se = 81% and Sp = 73.7%) refractometers for assessing alpacas with low IgG. In conclusion, the Brix and STP refractometers lack accuracy in measuring alpaca IgG concentrations, but may be useful for screening animals for low serum IgG. However, the TIR assay with a cutoff point of 13 g/L was more appropriate for identifying low IgG than either refractometer. Another study that focuses on neonatal crias is recommended in order to evaluate the usefulness of these assays for field diagnosing of failure of transfer of passive immunity (FTPI).
اظهر المزيد [+] اقل [-]Comparison of use of an infrared anesthetic gas monitor and refractometry for measurement of anesthetic agent concentrations
2011
Ambrisko, Tamas D. | Klide, Alan M.
Objective—To assess agreement between anesthetic agent concentrations measured by use of an infrared anesthetic gas monitor (IAGM) and refractometry. Sample—4 IAGMs of the same type and 1 refractometer. Procedures—Mixtures of oxygen and isoflurane, sevoflurane, desflurane, or N2O were used. Agent volume percent was measured simultaneously with 4 IAGMs and a refractometer at the common gas outlet. Measurements obtained with each of the 4 IAGMs were compared with the corresponding refractometer measurements via the Bland-Altman method. Similarly, Bland-Altman plots were also created with either IAGM or refractometer measurements and desflurane vaporizer dial settings. Results—Bias ± 2 SD for comparisons of IAGM and refractometer measurements was as follows: isoflurane, −0.03 ± 0.18 volume percent; sevoflurane, −0.19 ± 0.23 volume percent; desflurane, 0.43 ± 1.22 volume percent; and N2O, −0.21 ± 1.88 volume percent. Bland-Altman plots comparing IAGM and refractometer measurements revealed nonlinear relationships for sevoflurane, desflurane, and N2O. Desflurane measurements were notably affected; bias ± limits of agreement (2 SD) were small (0.1 ± 0.22 volume percent) at < 12 volume percent, but both bias and limits of agreement increased at higher concentrations. Because IAGM measurements did not but refractometer measurements did agree with the desflurane vaporizer dial settings, infrared measurement technology was a suspected cause of the nonlinear relationships. Conclusions and Clinical Relevance—Given that the assumption of linearity is a cornerstone of anesthetic monitor calibration, this assumption should be confirmed before anesthetic monitors are used in experiments.
اظهر المزيد [+] اقل [-]