خيارات البحث
النتائج 1 - 10 من 189
The use of copper isotopes for understanding metal transfer mechanisms within the continuum mine—river—dam (Huelva Region, Spain)
2023
Viers, Jérôme | Freydier, Rémi | Grande, Jose Antonio | Zouiten, Cyril | Marquet, Aurelie | Delpoux, Sophie | Santisteban, Maria | Pokrovsky, Oleg | Fortes, Juan Carlos | Davila, Jose Miguel | Sarmiento, Aguasante | Audry, Stéphane | Luis, Ana | Meheut, Merlin | Behra, Philippe | Darrozes, José | Monnin, Christophe | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) | Hydrosciences Montpellier (HSM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Universidad de Huelva | Tomsk State University [Tomsk] | Universidade de Aveiro = University of Aveiro | Laboratoire de Chimie Agro-Industrielle (LCA) ; Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques (ENSIACET) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work was supported by the EC2CO program of the INSU/ CNRS institution and by the European Union for co-funding SOIL TAKE CARE SOE1/P4/F0023 through the European Regional Development Fund (ERDF), under the Interreg SUDOE Program.
International audience | Mining areas and in particular those containing massive sulfides have left a heavy environmental legacy with soils and hydrographic networks highly contaminated with metals and metalloids as for example in the Iberian Pyrite Belt (Huelva, Spain). Here, we present new data on copper (Cu) isotopic composition of waters and solids collected along a continuum Mine (Tharsis)-River (Meca)-Lake (Sancho) in the Iberian Pyrite Belt. Our results show that the isotopic signature of pit lakes is spatially variable, but remains stable over the seasons; this signature seems to be controlled by water-rock interaction processes. The data obtained on the Meca River imply a number of attenuation processes such as decrease in the metal concentration by precipitation of secondary minerals. This is accompanied by preferential retention of the heavy isotope (Cu-65) with a possibility of living organisms (e.g., algae) participation. The terminal Sancho lake demonstrated constant isotopic signature over the entire depth of the water column despite sizable variations in Cu concentrations, which can be tentatively explained by a superposition of counter-interacting biotic and abiotic processes of Cu fractionation. Overall, the understanding of the isotopic variations along the hydrological continuum is useful for a better understanding of metal element transfer within mining environments and surrounding surface waters.
اظهر المزيد [+] اقل [-]Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain)
2022
Cánovas, Carlos Ruiz | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika | Pérez López, Rafael
This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 μg/L in the Tinto and Odiel estuaries, respectively, to 0.02 μg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 μg/L to 0.02 μg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl⁰ and K⁺ ions, which compete for adsorption sites with Tl⁺ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.
اظهر المزيد [+] اقل [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
اظهر المزيد [+] اقل [-]Leaching characteristics of heavy metals in tailings and their simultaneous immobilization with triethylenetetramine functioned montmorillonite (TETA-Mt) against simulated acid rain
2020
Huang, Zhiyan | Jiang, Lu | Wu, Pingxiao | Dang, Zhi | Zhu, Nengwu | Liu, Zehua | Luo, Hanjin
For further understanding leaching characteristics of heavy metals in tailings and better immobilization on heavy metals against acid rain, batch experiments were conducted. The leaching results of Cu(II), Zn(II), Cd(II) and Mn(II) can be well fit by second-order kinetics equation, and Pb(II) can be well fit by two-constant equation. The leaching intensity of heavy metals in tailings was ranged as: Mn(II)> Cu(II)> Cd(II)> Zn(II)> Pb(II). Triethylenetetramine functioned montmorillonite (TETA-Mt) was successfully synthesized and can obtain simultaneous immobilization effect compared with Mt and TETA, and immobilization rates on Cu(II), Cd(II), Mn(II) and Zn(II) can reach above 90%, the immobilization rate on Pb(II) can reach more than 75%. The mechanisms for efficient immobilization of heavy metals on TETA-Mt included buffering and adsorption abilities. The mechanism for TETA-Mt adsorption of heavy metals included physical absorption, chelation and chemical sedimentation. The results showed that TETA-Mt can be applied to effective immobilization of heavy metals in tailings and efficient remediation of acid mine drainage (AMD) in acid rain area.
اظهر المزيد [+] اقل [-]Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides
2018
Nieva, N Eugenia | Borgnino, Laura | García, M Gabriela
The sulphide-rich mine wastes accumulated in tailing dumps of La Concordia Mine (Puna of Argentina) have been exposed to the weathering action for more than 30 years. Since then, a series of redox reactions have triggered the generation of a highly acidic drainage -rich in dissolved metals-that drains into the La Concordia creek. The extent of metal and acid release in the site was analysed through field surveys and laboratory experiments. Static tests were conducted in order to predict the potential of the sulphidic wastes to produce acid, while Cu-, Zn-, Fe- and Pb-bearing phases present in the wastes were identified by XRD, SEM/EDS analysis and sequential extraction procedures. Finally, the release of these metals during sediment-water interaction was assessed in batch experiments carried out in a period of nearly two years. Field surveys indicate that the prolonged alteration of the mine wastes led to elevated electrical conductivity, pH values lower than 4 and metal concentrations that exceed the guide values for drinking water in the La Concordia stream regardless of the dominating hydrological conditions. The highly soluble Fe and Mg (hydrous)sulphates that form salt crusts on the tailings surfaces and the riverbed sediments play an important role in the control of metal mobility, as they rapidly dissolve in contact with water releasing Fe, but also Cu and Zn which are scavenged by such minerals. Another important proportion of the analysed metals is adsorbed onto Fe (hydr)oxides or form less soluble hydroxysulfates. Metals present in these phases are released to water more slowly, thus representing a potential long term source of heavy metal pollution. The obtained results are a contribution to the understanding of long term metal transformations and mobility in mine waste-impacted sites.
اظهر المزيد [+] اقل [-]Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China
2017
Hao, Chunbo | Wei, Pengfei | Pei, Lixin | Du, Zerui | Zhang, Yi | Lu, Yanchun | Dong, Hailiang
Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43–280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, “Ferrovum”, a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe2+ was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic and Alpine suggested that the native Chlamydomonas species may have been both acidophilic and psychrophilic after a long acclimation time in this extreme environment.
اظهر المزيد [+] اقل [-]Long term remediation of highly polluted acid mine drainage: A sustainable approach to restore the environmental quality of the Odiel river basin
2011
Caraballo, Manuel A. | Macías, Francisco | Rötting, Tobias S. | Nieto, José Miguel | Ayora, Carlos
During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO₃ and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m³/day achieving an acid load reduction of 597 g·(m² day)⁻¹, more than 10 times higher than the generally accepted 40 g·(m² day)⁻¹ value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage.
اظهر المزيد [+] اقل [-]Integrating 3D geological modeling and kinetic modeling to alleviate acid mine drainage through upstream mine waste classification
2022
Toubri, Youssef | Demers, Isabelle | Beier, Nicholas
Mine waste classification preceding mining constitutes a proactive solution to classify and segregate mine waste into geo-environmental domains based upon the magnitude of their environmental risks. However, upstream classification requires multi-disciplinary and integrated approaches. This study integrates geological modeling and kinetic modeling to inform upstream mine waste classification based on the pH generated from the main acid-generating and acid-neutralizing reactions once the mine solid waste is stored in oxidizing conditions. Geological models were used to depict the ante-mining spatial distribution of the main reactive minerals: pyrite, albite and calcite. Subsequently, the corresponding block models were created. The dimension of the elementary voxels for each block model was set at 40х40х40 m for this study. The kinetic modeling approach was performed using PHREEQC and VS2DRTI to consider unsaturated conditions. The kinetic modeling simulated a 1D column for each voxel. The column simulates the excavated state of the hosting rock involving kinetic reactions and unsaturated flow under highly oxidizing conditions. Subsequently, the resulting pH for different intervals of time was assigned to its respective voxel. The outcome consists of a spatio-temporal visualization of the pH defining ante-mining geo-environmental domains, thereby providing the opportunity for formulating proactive management measures regarding the hazardous geo-environmental domains.
اظهر المزيد [+] اقل [-]Isotope evidence for temporal and spatial variations of anthropogenic sulfate input in the Yihe River during the last decade
2022
Duan, Hui-zhen | Zhang, Dong | Zhao, Zhi-qi | Jiang, Hao | Zhang, Cong | Huang, Xing-yu | Ma, Bing-juan | Guo, Qing-jun
Pyrite oxidation and sedimentary sulfate dissolution are the primary components of riverine sulfate (SO₄²⁻) and are predominant in global SO₄²⁻ flux into the ocean. However, the proportions of anthropogenic SO₄²⁻ inputs have been unclear, and their tempo-spatial variations due to human activities have been unknown. Thus, field work was conducted in a spatially heterogeneous human-affected area of the Yihe River Basin (YRB) during a wet year (2010) and drought years (2017/2018). Dual sulfate isotopes (δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻) and Bayesian isotope mixing models were used to calculate the variable anthropogenic SO₄²⁻ inputs and elucidate their temporal impacts on riverine SO₄²⁻ flux. The results of the mixing models indicated acid mine drainage (AMD) contributions increased from 56.1% to 83.1% of upstream sulfate and slightly decreased from 46.3% to 44.0% of midstream sulfate in 2010 and 2017/2018, respectively, in the Yihe River Basin. The higher upstream contribution was due to extensive metal-sulfide-bearing mine drainage. Sewage-derived SO₄²⁻ and fertilizer-derived SO₄²⁻ inputs in the lower reaches had dramatically altered SO₄²⁻ concentrations and δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻ values. Due to climate change, the water flow discharge decreased by about 70% between 2010 and 2017/2018, but the riverine sulfate flux was reduced by only about 58%. The non-proportional increases in anthropogenic sulfate inputs led to decreases in the flow-weighted average values of δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻ from 10.3‰ to 9.9‰ and from 6.1‰ to 4.4‰, respectively. These outcomes confirm that anthropogenic SO₄²⁻ inputs from acid mine drainage (AMD) have increased, but sewage effluents SO₄²⁻ inputs have decreased.
اظهر المزيد [+] اقل [-]History of environmental contamination at Sunny Corner Ag–Pb–Zn mine, eastern Australia: A meta-analysis approach
2021
Kavehei, Armin | Hose, Grant C. | Gore, Damian B.
Environmental impacts associated with mining can be important even after cessation of ore extraction, particularly where sites are abandoned and unremediated. Acid Mine Drainage (AMD) is a common concern in such legacy mines where sulfide ores were extracted. AMD can introduce large concentrations of heavy metals to aquatic systems and contaminate the environment for many kilometres downstream of old mines. Understanding the pattern and history of contamination from legacy mines can help environmental managers make better management decisions. Meta-analysis is a statistical tool that can help determine the significance of changes in metal contamination over the years since cessation of mining. Here we use meta-analysis to examine metal contamination at and downstream of Sunny Corner silver (Ag)-lead (Pb)-zinc (Zn) mine in eastern Australia. Copper (Cu), Zn and Pb concentrations in water increased from 1978 to 2018 within 2 km downstream of the main mine adit, whereas for stream sediment, only Zn concentrations increased significantly over the same period. In contrast, Pb concentrations in surface soil decreased over the years from 2000 to 2018.
اظهر المزيد [+] اقل [-]