خيارات البحث
النتائج 1 - 10 من 300
Comparaison des filtres plantés de végétaux avec des procédés de traitement conventionnels en conditions réelles d'exploitation en climat tropical | Comparison of vertical flow treatment wetlands to other treatment technologies in real operating conditions under tropical climate
2018
Lombard Latune, R. | Leriquier, F. | Oucacha, C. | Pelus, L. | Lacombe, Geneviève | Molle, Pascal
The main treatment technologies implemented in the French Overseas Territories are compared based on the analysis of self-monitoring database built for this study. Activated sludge is the most implemented but least reliable technology, due to sludge leakages noticeable on 10% of the campaigns. Algae growth limits facultative ponds performances. Settling troubles have been identified on rotative biological contactor. Vertical flow treatment wetlands show the best performances. Coefficient Of Reliability use and comparison with data from Brazil confirm those results.
اظهر المزيد [+] اقل [-]Sludge drying reed beds : a full and pilot-scales study for activated sludge treatment
2008
Troesch, S. | Liénard, A. | Molle, Pascal | Merlin, Gerard | Esser, D.
Sludge drying reed beds have been used for dewatering and mineralization of sludge since the beginning of the 90's, but their insufficient performances in terms of Dry Matter [DM] content and mineralization of the sludge have made necessary new studies. Therefore, 8 pilots of 2m² each and a full-scale plant (13 000 p.e , 8 beds of 470m² in operation for 4 years) have been monitored to examine the influence of the sludge loading rate, the sludge quality and the loading frequency on the dewatering and mineralization efficiencies. Two filtration layers and two loading rhythms were tested on pilots which were fed at a loading rate of 25-30 kgDM.m-2.yr-1 during the first year of operation (commissioning period). Hydraulic behaviour (infiltration rate, outflow), O2 and CO2 relative concentrations in the filtration media, redox potential, pollutants removal and dry matter content were assessed during all the study. The rheological quality of the extracted sludge from full scale beds was assessed and showed that its mechanical behaviour exceed those of sludge of comparable dry matter content, making its spreading easier. Therefore, these sludge could easily claim the status of solid and stabilized sludge according to the French regulation. Design and management recommendations (number of beds, loading rates, feeding/rest period) gained from the experiments results are suggested.
اظهر المزيد [+] اقل [-]Inactivation of electoplanting sludge by vitrification
1997
Karlovic, E. | Dalmacija, B. | Kovacevic, S. (Prirodno-matematicki fakultet, Novi Sad (Yugoslavia). Institut za hemiju)
The work is concerned with the possibility of inactivation of galvanic sludge formed in treatment of wastewaters of electroplanting plants by imbedding the waste in a glass material. Glass can be synthesized in contact with the waste by mixing and heating with glass constituents. The efficiency of inactivation was monitored by leaching the obtained materials. The results of leaching tests showed that the highest amount of electroplanting sludge (about 30%) can be inactivated by vitrification of the following mixtures: 26.3% of electoplanting sludge, 43.7% of sand, and 30.0% of Na2CO3 at 1000 deg C; 30% of galvanic sludge, 49% of sand and 21% of Na2CO3 at 1100 deg C.
اظهر المزيد [+] اقل [-]Lab-scale experimental strategy for determining micropollutant partition coefficient and biodegradation constants in activated sludge | Méthodologie de détermination du coefficient de partition et des constantes de biodégradation de micropolluants en boues activées
2015
Pomies, Maxime | Choubert, J.M. | Wisniewski, Christelle | Miege, Cecile | Budzinski, H. | Coquery, Marina | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Démarche intégrée pour l'obtention d'aliments de qualité (UMR Qualisud) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Ecotechnologies [TR1_IRSTEA]TED | International audience | The nitrifying/denitrifying activated sludge process removes several micropollutants from wastewater by sorption onto sludge and/or biodegradation. The objective of this paper is to propose and evaluate a lab-scale experimental strategy for the determination of partition coefficient and biodegradation constant for micropollutant with an objective of modelling their removal. Four pharmaceutical compounds (ibuprofen, atenolol, diclofenac and fluoxetine) covering a wide hydrophobicity range (log Kow from 0.16 to 4.51) were chosen. Dissolved and particulate concentrations were monitored for 4 days, inside two reactors working under aerobic and anoxic conditions, and under different substrate feed conditions (biodegradable carbon and nitrogen). We determined the mechanisms responsible for the removal of the target compounds: (i) ibuprofen was biodegraded, mainly under aerobic conditions by cometabolism with biodegradable carbon, whereas anoxic conditions suppressed biodegradation; (ii) atenolol was biodegraded under both aerobic and anoxic conditions (with a higher biodegradation rate under aerobic conditions), and cometabolism with biodegradable carbon was the main mechanism; (iii) diclofenac and fluoxetine were removed by sorption only. Finally, the abilities of our strategy were evaluated by testing the suitability of the parameters for simulating effluent concentrations and removal efficiency at a full-scale plant.
اظهر المزيد [+] اقل [-]Comparison of vertical flow treatment wetlands to other treatment technologies in real operating conditions under tropical climate | Comparaison des filtres plantés de végétaux avec des procédés de traitement conventionnels en conditions réelles d'exploitation en climat tropical
2018
Lombard Latune, R. | Leriquier, F. | Oucacha, C. | Pelus, L. | Lacombe, Gérald | Molle, Pascal | Réduire, valoriser, réutiliser les ressources des eaux résiduaires (UR REVERSAAL) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Office de l'Eau Martinique | ETIAGE REMIRE MONTJOLY FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Ecotechnologies [TR1_IRSTEA]TED [ADD1_IRSTEA]Valoriser les effluents et déchets organiques | International audience | The main treatment technologies implemented in the French Overseas Territories are compared based on the analysis of self-monitoring database built for this study. Activated sludge is the most implemented but least reliable technology, due to sludge leakages noticeable on 10% of the campaigns. Algae growth limits facultative ponds performances. Settling troubles have been identified on rotative biological contactor. Vertical flow treatment wetlands show the best performances. Coefficient Of Reliability use and comparison with data from Brazil confirm those results.
اظهر المزيد [+] اقل [-]Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups
2022
Tang, Sijing | Qian, Jin | Wang, Peifang | Lu, Bianhe | He, Yuxuan | Yi, Ziyang | Zhang, Yuhang
Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.
اظهر المزيد [+] اقل [-]Comparing with oxygen, nitrate simplifies microbial community assembly and improves function as an electron acceptor in wastewater treatment
2022
Zheng, Lei | Wang, Xue | Ren, Mengli | Yuan, Dongdan | Tan, Qiuyang | Xing, Yuzi | Xia, Xuefeng | Xie, En | Ding, Aizhong
Biochemical oxidation and reduction are key processes in treating biological wastewater and they require the presence of electron acceptors. The functional impact of electron acceptors on microbiomes provides strategies for improving the treatment efficiency. This research focused on two of the most important electron acceptors, nitrate and oxygen. Molecule ecological network, null model, and functional prediction based on high-throughput sequencing were used to analyze the microbiomes features and assembly mechanism. The results revealed nitrate via the homogeneous selection (74.0%) decreased species diversity, while oxygen via the homogeneous selection (51.1%) and dispersal limitation (29.6%) increased the complexity of community structure. Microbes that were more strongly homogeneously selected for assembly included polyphosphate accumulating organisms (PAOs), such as Pseudomonas and variovorax in the nitrate impacted community; Pseudomonas, Candidatus_Accumulibacter, Thermomonas and Dechloromonas, in the oxygen impacted community. Nitrate simplified species interaction and increased the abundance of functional genes involving in tricarboxylic acid cycle (TCA cycle), electron transfer, nitrogen metabolism, and membrane transport. These findings contribute to our knowledge of assembly process and interactions among microorganisms and lay a theoretical basis for future microbial regulation strategies in wastewater treatment.
اظهر المزيد [+] اقل [-]Effects of long-term perfluorooctane sulfonate (PFOS) exposure on activated sludge performance, composition, and its microbial community
2022
Lu, Bianhe | Qian, Jin | He, Fei | Wang, Peifang | He, Yuxuan | Tang, Sijing | Tian, Xin
The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 μg L-1) and high (1000 μg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.
اظهر المزيد [+] اقل [-]Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies
2021
Langbehn, Rayane Kunert | Michels, Camila | Soares, Hugo Moreira
In this critical review, we explored the most recent advances about the fate of antibiotics on biological wastewater treatment plants (WWTP). Although the occurrence of these pollutants in wastewater and natural streams has been investigated previously, some recent publications still expose the need to improve the detection strategies and the lack of information about their transformation products. The role of the antibiotic properties and the process operating conditions were also analyzed. The pieces of evidence in the literature associate several molecular properties to the antibiotic removal pathway, like hydrophobicity, chemical structure, and electrostatic interactions. Nonetheless, the influence of operating conditions is still unclear, and solid retention time stands out as a key factor. Additionally, the efficiencies and pathways of antibiotic removals on conventional (activated sludge, membrane bioreactor, anaerobic digestion, and nitrogen removal) and emerging bioprocesses (bioelectrochemical systems, fungi, and enzymes) were assessed, and our concern about potential research gaps was raised. The combination of different bioprocess can efficiently mitigate the impacts generated by these pollutants. Thus, to plan and design a process to remove and mineralize antibiotics from wastewater, all aspects must be addressed, the pollutant and process characteristics and how it is the best way to operate it to reduce the impact of antibiotics in the environment.
اظهر المزيد [+] اقل [-]Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups
2021
Qian, Jin | He, Xixian | Wang, Peifang | Xu, Bin | Li, Kun | Lu, Bianhe | Jin, Wen | Tang, Sijing
Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS−COOH and PS−NH₂) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH₂ NPs and EPS were CO and O–C–O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH₂ NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH₂ was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.
اظهر المزيد [+] اقل [-]