خيارات البحث
النتائج 1 - 10 من 160
Trace element distribution in marine microplastics using laser ablation-ICPMS
2020
El Hadri, Hind | Gigault, Julien | Mounicou, Sandra | Grassl, Bruno | Reynaud, Stephanie
International audience | Due to the dramatic quantity of plastic debris released into our environment, one of the biggest challenges of the next decades is to trace and quantify microplastics (MPs) in our environments, especially to better evaluate their capacity to transport other contaminants such as trace metals. In this study, trace elements (Fe, Cu, Zn, As, Cd, Sn, Sb, Pb, and U) were analyzed in the microplastic subsurface (200 μm) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Microplastics subjected to the marine environment were collected on beaches (Guadeloupe) exposed to the north Atlantic gyre. We established a strategy to discriminate sorbed contaminants from additives based on the metal concentration profiles in MP subsurface using qualitative and quantitative approaches. A spatiotemporal correlation of the sorption pattern was proposed to compare MPs in terms of relative exposure time and time-weighted average concentrations in the exposure media.
اظهر المزيد [+] اقل [-]Phthalates released from microplastics inhibit microbial metabolic activity and induce different effects on intestinal luminal and mucosal microbiota
2022
Yan, Zehua | Zhang, Shenghu | Zhao, Yonggang | Yu, Wenyi | Zhao, Yanping | Zhang, Yan
The intestine is not only the main accumulation organ of microplastics (MPs), but also the intestinal environment is very conductive to the release of additives in MPs. However, the kinetics of release process, influence factors, and the related effects on gut microbiota remain largely unknown. In this study, a mucosal-simulator of the human intestinal microbial ecosystem (M-SHIME) was used to investigate the influence of gut microbiota on the release of phthalates (PAEs) from MPs and the effects of MPs on the intestinal luminal microbiota and mucosal microbiota. We found that di-(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and dimethyl phthalate (DMP) were the dominant PAEs released in the gut. Gut microbiota accelerated the release of PAEs, with the time to reach the maximum release was shortened from 7 days to 2 days. Moreover, MPs induced differential effects on luminal microbiota and mucosal microbiota. Compared with mucosal microbiota, the luminal microbiota was more susceptible to the leaching of PAEs from MPs, as evidenced by more microbiota alterations. MPs also inhibited the metabolic activity of intestinal flora based on the reduced production of short chain fatty acids (SCFA). These effects were mainly contributed by the release of PAEs. Acidaminococcus and Morganella were simultaneously correlated to the release of PAEs and the inhibition of metabolic activity of intestinal microbiota and can be used as indicators for the intestinal exposure of MPs and additives.
اظهر المزيد [+] اقل [-]Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals
2020
Nyashina, G.S. | Kuznetsov, G.V. | Strizhak, P.A.
The active use of solid fossil fuels (coal) in the production of heat and electricity has led to significant pollution, climate change, environmental degradation, and an increase in morbidity and mortality. Many countries (in particular, European ones, China, Japan, the USA, Canada, etc.) have launched programs for using plant and agricultural raw materials to produce heat and electricity by burning them instead of or together with traditional fuels. It is a promising solution to produce slurry fuels, based on a mixture of coal processing, oil refining and agricultural waste. This paper presents the results of experimental research into the formation and assessment of the most hazardous emissions (sulfur and nitrogen oxides) from the combustion of promising coal slurry fuels with straw, sunflower and algae additives, i.e. the most common agricultural waste. A comparative analysis has been carried out to identify the differences in the concentrations of sulfur and nitrogen oxides from the combustion of typical coal, coal processing waste, as well as fuel slurries with and without plant additives. It has been shown that the concentration of sulfur and nitrogen oxides can be reduced by 62–87% and 12–57%, respectively, when using small masses of plant additives (no more than 10 wt%) and maintaining high combustion heat of the slurry fuel. However, the use of algae and straw in the slurry composition can increase the HCl emissions, which requires extra measures to fight corrosion. A generalizing criterion of slurry fuel vs. coal efficiency has been formulated to illustrate significant benefits of adding plant solid waste to coal-water slurries containing petrochemicals. Straw and sunflower waste (10 wt%) were found to be the best additives to reduce the air pollutant emissions.
اظهر المزيد [+] اقل [-]In vitro avian bioaccessibility of metals adsorbed to microplastic pellets
2020
Microplastics are known to be associated with co-contaminants, but little is understood about the mechanisms by which these chemicals are transferred from ingested plastic to organisms. This study simulates marine avian gastric conditions in vitro to examine the bioaccessibility of authigenic metals (Fe, Mn) and trace metals (Co, Pb) that have been acquired by polyethylene microplastic pellets from their environment. Specifically, different categories of pellet were collected from beaches in Cornwall, southwest England, and exposed to an acidified saline solution of pepsin (pH ∼ 2.5) at 40 °C over a period of 168 h with extracted metal and residual metal (available to dilute aqua regia) analysed by ICP-MS. For Fe, Mn and Co, kinetic profiles consisted of a relatively rapid initial period of mobilisation followed by a more gradual approach to quasi-equilibrium, with data defined by a diffusion model and median rate constants ranging from about 0.0002 (μg L⁻¹)⁻¹ h⁻¹ for Fe to about 7 (μg L⁻¹)⁻¹ h⁻¹ for Co. Mobilisation of Pb was more complex, with evidence of secondary maxima and re-adsorption of the metal to the progressively modified pellet surface. At the end of the time-courses, maximum total concentrations were 38.9, 0.81, 0.014 and 0.10 μg g⁻¹ for Fe, Mn, Co and Pb, respectively, with maximum respective percentage bioaccessibilities of around 60, 80, 50 and 80. When compared with toxicity reference values for seabirds, the significance of metals acquired by microplastics from the environment and exposed to avian digestive conditions is deemed to be low, but studies of a wider range of plastics and metal associations (e.g. as additives) are required for a more comprehensive risk assessment.
اظهر المزيد [+] اقل [-]Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics
2020
Luo, Hongwei | Li, Yu | Zhao, Yaoyao | Xiang, Yahui | He, Dongqin | Pan, Xiangliang
It is of environmental significance to study the leaching performance of additives from microplastics (MPs) and further evaluate the toxicity of leachate to microalgae. Here, we investigated the effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented MPs. Results show that aging of MPs caused surface cracks and fragmentation, increased their surface area and carbonyl contents, and promoted the release of lead chromate pigment. Chromium (Cr) and lead (Pb) tend to leach under acidic condition, rather than neutral and alkali environment. Aging treatment facilitates the leaching performance and a high concentration of NaCl solution also favors the leaching process. Toxicology experiments demonstrate that only high concentration of leachate (>10 μg L⁻¹) exerted significant inhibitory influence (p < 0.005) on cell photosynthesis of Microcystis aeruginosa. The growth inhibition of algal cells remarkably increased with increasing leachate concentrations. We observed more inhibiting effects on cell growth and photosynthesis using the leachates of aged MPs. Longer aging time leads to more release of Cr and Pb, rendering higher toxicity to microalgae. These novel findings will benefit us from assessing the leaching behavior of additives in MPs and their toxicological risks to aquatic organisms.
اظهر المزيد [+] اقل [-]Mitochondrial metabolism is central for response and resistance of Saccharomyces cerevisiae to exposure to a glyphosate-based herbicide
2020
Ravishankar, Apoorva | Cumming, Jonathan R. | Gallagher, Jennifer E.G.
Glyphosate-based herbicides, the most extensively used herbicides in the world, are available in an enormous number of commercial formulations with varying additives and adjuvants. Here, we study the effects of one such formulation, Credit41, in two genetically diverse yeast strains. A quantitative trait loci (QTL) analysis between a sensitive laboratory strain and a resistant strain linked mitochondrial function to Credit41 resistance. Two genes encoding mitochondrial proteins identified through the QTL analysis were HFA1, a gene that encodes a mitochondrial acetyl CoA carboxylase, and AAC3, which encodes a mitochondrial inner membrane ATP/ADP translocator. Further analysis of previously studied whole-genome sequencing data showed that, although each strain uses varying routes to attain glyphosate resistance, most strains have duplications of mitochondrial genes. One of the most well-studied functions of the mitochondria is the assembly of Fe–S clusters. In the current study, the expression of iron transporters in the transcriptome increased in cells resistant to Credit41. The levels of iron within the cell also increased in cells exposed to Credit41 but not pure glyphosate. Hence, the additives in glyphosate-based herbicides have a significant contribution to the negative effects of these commercial formulations on biological systems.
اظهر المزيد [+] اقل [-]Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna
2019
Schrank, Isabella | Trotter, Benjamin | Dummert, Julia | Scholz-Böttcher, Barbara M. | Löder, Martin G.J. | Laforsch, Christian
Plastic waste is continuously introduced not only into marine, but also freshwater environments, where it fragments into microplastics. Organisms may be affected by the particles themselves due to ingestion and indirectly via incorporated additives such as plasticizers, since these substances have the ability to leach out of the polymer matrix. Although it has been indicated that the likelihood of additives leaching out into the gut lumen of organisms exposed to microplastics is low, studies distinguishing between the effects of the synthetic polymer itself and incorporated additives of the same polymer are scarce. Since this is obligatory for risk assessment, we analyzed the chronic effects of flexible polyvinylchloride (PVC), a widely used polymer, containing the plasticizer diisononylphthalate (DiNP) on morphology and life history of the freshwater crustacean Daphnia magna and compared these effects with the effects of rigid PVC, lacking DiNP, as well as a glass bead control. After up to 31 days of exposure, rigid PVC and glass beads did not affect body length and relative tail spine length of D. magna, whereas flexible PVC led to an increased body length and a reduced number of offspring. None of the treatments increased the mortality significantly. We were able to show that 2.67μg/L DiNP leached out of the flexible PVC into the surrounding medium using GC-MS. Yet, we were not able to measure leachate inside the gut lumen of D. magna. The effects emerged towards the end of the experiment, due to the time dependent process of leaching. Therefore, the results highlight the relevance of long-term chronic exposure experiments, especially as leaching of additives takes time. Further, our study shows the importance to distinguish between microplastics containing leachable additives and the raw polymer in ecotoxicological testing.
اظهر المزيد [+] اقل [-]Recent advances in toxicological research of nanoplastics in the environment: A review
2019
Nanoplastics have attracted increasing attention in recent years due to their widespread existence in the environment and the potential adverse effects on living organisms. In this paper, the toxic effects of nanoplastics on organisms were systematically reviewed. The translocation and absorption of nanoplastics, as well as the release of additives and contaminants adsorbed on nanoplastics in the organism body were discussed, and the potential adverse effects of nanoplastics on human health were evaluated. Nanoplastics can be ingested by organisms, be accumulated in their body and be transferred along the food chains. Nanoplastics showed effects on the growth, development and reproduction of organisms, and disturbing the normal metabolism. The toxic effects on living organisms mainly depended on the surface chemical properties and the particle size of nanoplastics. Positively charged nanoplastics showed more significant effects on the normal physiological activity of cells than negatively charged nanoplastics, and smaller particle sized nanoplastics could more easily penetrate the cell membranes, hence, accumulated in tissues and cells. Additionally, the release of additives and contaminants adsorbed on nanoplastics in organism body poses more significant threats to organisms than nanoplastics themselves. However, there are still knowledge gaps in the determination and quantification of nanoplastics, as well as their contaminant release mechanisms, degradation rates and process from large plastics to nanoplastics, and the transportation of nanoplastics along food chains. These challenges would hinder the risk assessment of nanoplastics in the environment. It is necessary to further develop the risk assessment of nanoplastics and deeply investigate its toxicological effects.
اظهر المزيد [+] اقل [-]A comprehensive risk assessment of human inhalation exposure to atmospheric halogenated flame retardants and organophosphate esters in an urban zone
2019
Hu, Yuan-Jie | Bao, Lian-Jun | Huang, Chun-Li | Li, Shao-Meng | Zeng, E. Y. (Eddy Y.)
Inhalation exposure to flame retardants used as additives to minimize fire risk and plasticizers is ubiquitous in human daily activities, but has not been adequately assessed. To address this research gap, the present study conducted an assessment of human health risk for four age groups through inhalation exposure to size fractionated particle-bound and gaseous halogenated flame retardants (polybrominated diphenyl ethers (PBDEs) and alternative halogenated flame retardants (AHFRs)) and organophosphate esters (OPEs) at indoor and outdoor environments (school, office, and residence) in three districts of a megacity (Guangzhou, China). Results demonstrated that OPEs were the dominant components among all targets. Indoor daily intakes of PBDEs and OPEs were 13–16 times greater than outdoor levels for all age groups. Gaseous OPEs contributed significantly greater than particle-bound compounds to daily intakes of all target compounds. Based on the different life scenarios, hazard quotient (HQ) and incremental life cancer risk (ILCR) from adults exposure to PBDEs and OPEs in indoor and outdoor settings were the greatest, followed by adolescents, children, and seniors. The estimated HQ and ILCR for all age groups both indoors and outdoors were lower than the safe level (HQ = 1 and ILCR = 10−6), indicating that the potential health risk for local residents in Guangzhou via inhalation exposure to atmospheric halogenated flame retardants and OPEs was low.
اظهر المزيد [+] اقل [-]Organophosphate ester and phthalate ester metabolites in urine from primiparas in Shenzhen, China: Implications for health risks
2019
Chen, Yi | Jiang, Lei | Lu, Shaoyou | Kang, Li | Luo, Xianru | Liu, Guihua | Cui, Xinyi | Yu, Yingxin
Organophosphate esters (OPEs) and phthalate esters (PAEs) are extensively used as additives in commercial and household products. However, knowledge on human exposure to OPEs and PAEs remains limited in China. This study aimed to investigate OPE and PAE metabolites in urine samples of primiparas and to evaluate the cumulative risk of OPE and PAE exposure. A total of 8 OPE metabolites and 11 PAE metabolites were measured in urine samples of 84 primiparas from Shenzhen, China. The OPE metabolites were found in at least 72% of the urine samples with bis(2-chloroethyl) phosphate (BCEP) being the dominant analogue. Among the 11 PAE metabolites, mono-n-butyl phthalate (mBP) was the most abundant analogue and had a median concentration (139 μg/L) greater than those reported in urine samples from other countries and regions. A significant, positive correlation was found between Σ₈OPEMs (the sum of 8 OPE metabolites) and body mass index (BMI). The urinary concentration of Σ₁₁PAEMs (the sum of 11 PAE metabolites) was positively associated with the time of computer using by the primiparas. The estimated daily intakes (EDI) of tris(2-chlorethyl) phosphate (TCEP, the parent chemical of BCEP) and di-n-butyl phthalate (DnBP, the parent chemical of mBP) were determined to be 0.47 and 9.14 μg/kg bw/day, respectively. The 95th percentile EDI values for TCEP and DnBP both exceeded their corresponding reference doses. Twelve and fifty-five percentage of the primiparas were estimated to have HIRfD (hazard index corresponding to reference doses) and HITDI (hazard index corresponding to tolerable daily intake) values exceeding 1 for OPEs and PAEs, respectively, suggesting a relatively high exposure risk.
اظهر المزيد [+] اقل [-]