خيارات البحث
النتائج 1 - 10 من 81
Enhanced treatment of organic matter in slaughter wastewater through live Bacillus velezensis strain using nano zinc oxide microsphere
2022
Deng, Jing | Jia, Mingxi | Zeng, Yu Qing | Li, Wen | He, JinTao | Ren, Jiali | Bai, Jie | Zhang, Lin | Li, Juan | Yang, Sheng
Slaughter wastewater is an important and wide range of environmental issues, and even threaten human health through meat production. A high efficiency and stability microsphere-immobilized Bacillus velezensis strain was designed to remove organic matter and inhibit the growth of harmful bacteria in process of slaughter wastewater. Bacillus velezensis was immobilized on the surface of sodium alginate (SA)/Polyvinyl alcohol (PVA)/Nano Zinc Oxide (Nano-ZnO) microsphere with the adhesion to bio-carrier through direct physical adsorption. Results indicated that SA/PVA/ZnO and SA/ZnO microspheres could inhibit E.coli growth with adding 0.15 g/L nano-ZnO and not affect Bacillus velezensis strain, and the removal the chemical oxygen demand (COD) rates of SA/PVA/ZnO microsphere immobilized cells are 16.99%, followed by SA/ZnO (13.69%) and free bacteria (7.61%) from 50% concentration slaughter wastewater within 24 h at 37 °C, pH 7.0, and 120 rpm, a significant difference was found between the microsphere and control group. Moreover, when the processing time reaches 36 h, COD degradation of SA/PVA/ZnO microsphere is obviously higher than other groups (SA/PVA/ZnO:SA/ZnO:control vs 18.535 : 15.446: 10.812). Similar results were obtained from 30% concentration slaughter wastewater. Moreover, protein degradation assay was detected, and there are no significant difference (SA/PVA/ZnO:SA/ZnO:control vs 35.4 : 34.4: 36.0). The design of this strategy could greatly enhance the degradation efficiency, inhibit the growth of other bacteria and no effect on the activity of protease in slaughter wastewater. These findings suggested that the nano-ZnO hydrogel immobilization Bacillus velezensis system wastewater treatment is a valuable alternative method for the remediation of pollutants from slaughter wastewater with a novel and eco-friendly with low-cost investment as an advantage.
اظهر المزيد [+] اقل [-]Ractopamine at legal residue dosage accelerates atherosclerosis by inducing endothelial dysfunction and promoting macrophage foam cell formation
2022
Chen, Chia-Hui | Guo, Bei-Chia | Hu, Po-An | Lee, Hsueh-Te | Hu, Hsuan-Yun | Hsu, Man-Chen | Chen, Wen-Hua | Lee, Tzong-Shyuan
Ractopamine, a synthetic β-adrenoreceptor agonist, is used as an animal feed additive to increase food conversion efficiency and accelerate lean mass accretion in farmed animals. The U.S. Food and Drug Administration claimed that ingesting products containing ractopamine residues at legal dosages might not cause short-term harm to human health. However, the effect of ractopamine on chronic inflammatory diseases and atherosclerosis is unclear. Therefore, we investigated the effects of ractopamine on atherosclerosis and its action mechanism in apolipoprotein E-null (apoe⁻/⁻) mice and human endothelial cells (ECs) and macrophages. Daily treatment with ractopamine for four weeks increased the body weight and the weight of brown adipose tissues and gastrocnemius muscles. However, it decreased the weight of white adipose tissues in apoe⁻/⁻ mice. Additionally, ractopamine exacerbated hyperlipidemia and systemic inflammation, deregulated aortic cholesterol metabolism and inflammation, and accelerated atherosclerosis. In ECs, ractopamine treatment induced endothelial dysfunction and increased monocyte adhesion and transmigration across ECs. In macrophages, ractopamine dysregulated cholesterol metabolism by increasing oxidized low-density lipoprotein (oxLDL) internalization and decreasing reverse cholesterol transporters, increasing oxLDL-induced lipid accumulation. Collectively, our findings revealed that ractopamine induces EC dysfunction and deregulated cholesterol metabolism of macrophages, which ultimately accelerates atherosclerosis progression.
اظهر المزيد [+] اقل [-]Transcriptome sequencing and metabolite analysis reveal the toxic effects of nanoplastics on tilapia after exposure to polystyrene
2021
Plastic particles, which are formed from routinely used plastics and their fragments, have become a new pollutant raising widespread concern about their potential effects. Several studies have been conducted to examine their toxicity, but the effects of nano-sized plastic fragments on freshwater organisms remain largely unclear and need to be further investigated. In this study, larval tilapia were first exposed to 100 nm polystyrene nanoparticles (PS-NPs, 20 mg/L) for seven days and then returned to freshwater without PS-NPs for another seven days in order to determine the toxic effects of PS-NPs at both transcriptomic and metabolomic levels. A total of 203 significantly changed metabolites, and 2,152 differentially expressed unigenes were identified between control and PS-NP treatment groups, control and recovery groups, as well as treatment and recovery groups. Our data suggested that PS-NPs induced abnormal metabolism of glycolipids, energy, and amino acids in tilapia after short-term exposure. Additionally, PS-NPs caused disturbed signaling, as suggested by the transcriptomic results. Different transcriptomic and metabolomic levels between the treatment group and recovery group indicated a persistent impact of PS-NPs on tilapia. The presence of adhesion molecule-related differentially expressed genes (DEGs) suggested that PS-NPs might cause early inflammatory responses. Notably, the detection of chemical stimulus involved in the sensory perception of smell was the most severely impacted biological process. Our work systemically studied the ecotoxicity of nano-sized plastics in aquatic creatures at the molecular and genetic levels, serving as a basis for future investigations on the prevention and treatment of such pollutants.
اظهر المزيد [+] اقل [-]Pharmacological inhibition of PAI-1 alleviates cardiopulmonary pathologies induced by exposure to air pollutants PM2.5
2021
Ghosh, Asish K. | Soberanes, Saul | Lux, Elizabeth | Shang, Meng | Aillon, Raul Piseaux | Eren, Mesut | Budinger, G.R Scott | Miyata, Toshio | Vaughan, Douglas E.
Numerous studies have established that acute or chronic exposure to environmental pollutants like particulate matter (PM) leads to the development of accelerated aging related pathologies including pulmonary and cardiovascular diseases, and thus air pollution is one of the major global threats to human health. Air pollutant particulate matter 2.5 (PM₂.₅)-induced cellular dysfunction impairs tissue homeostasis and causes vascular and cardiopulmonary damage. To test a hypothesis that elevated plasminogen activator inhibitor-1 (PAI-1) levels play a pivotal role in air pollutant-induced cardiopulmonary pathologies, we examined the efficacy of a drug-like novel inhibitor of PAI-1, TM5614, in treating PM₂.₅-induced vascular and cardiopulmonary pathologies. Results from biochemical, histological, and immunohistochemical studies revealed that PM₂.₅ increases the circulating levels of PAI-1 and thrombin and that TM5614 treatment completely abrogates these effects in plasma. PM₂.₅ significantly augments the levels of pro-inflammatory cytokine interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF), and this also can be reversed by TM5614, indicating its efficacy in amelioration of PM₂.₅-induced increases in inflammatory and pro-thrombotic factors. TM5614 reduces PM₂.₅-induced increased levels of inflammatory markers cluster of differentiation 107 b (Mac3) and phospho-signal transducer and activator of transcription-3 (pSTAT3), adhesion molecule vascular cell adhesion molecule 1 (VCAM1), and apoptotic marker cleaved caspase 3. Longer exposure to PM₂.₅ induces pulmonary and cardiac thrombosis, but TM5614 significantly ameliorates PM₂.₅-induced vascular thrombosis. TM5614 also reduces PM₂.₅-induced increased blood pressure and heart weight. In vitro cell culture studies revealed that PM₂.₅ induces the levels of PAI-1, type I collagen, fibronectin (Millipore), and sterol regulatory element binding protein-1 and 2 (SREBP-1 and SREBP-2), transcription factors that mediate profibrogenic signaling, in cardiac fibroblasts. TM5614 abrogated that stimulation, indicating that it may block PM₂.₅-induced PAI-1 and profibrogenic signaling through suppression of SREBP-1 and 2. Furthermore, TM5614 blocked PM₂.₅-mediated suppression of nuclear factor erythroid related factor 2 (Nrf2), a major antioxidant regulator, in cardiac fibroblasts. Pharmacological inhibition of PAI-1 with TM5614 is a promising therapeutic approach to control air pollutant PM₂.₅-induced cardiopulmonary and vascular pathologies.
اظهر المزيد [+] اقل [-]Adhesion of CdTe quantum dots on model membranes and internalization into RBL-2H3 cells
2017
Zhang, Mengmeng | Wei, Xiaoran | Ding, Lei | Hu, Jingtian | Jiang, Wei
Quantum dots (QDs) have attracted broad attention due to their special optical properties and promising prospect in medical and biological applications. However, the process of QDs on cell membrane is worth further investigations because such process may lead to harmful effects on organisms and also important for QD application. In this study, adhesion of amino- and carboxyl-coated CdTe QDs (A-QDs and C-QDs) on cell membrane and the subsequent internalization are studied using a series of endocytosis-free model membranes, including giant and small unilamellar vesicles, supported lipid bilayers and giant plasma membrane vesicles (GPMVs). The adhered QD amounts on model membranes are quantified by a quartz crystal microbalance. The CdTe QD adhesion on model membranes is governed by electrostatic forces. Positively charged A-QDs adhere on GPMV surface and passively penetrate the plasma membrane via endocytosis-free mechanism, but negatively charged C-QDs cannot. Rat basophilic leukemia (RBL-2H3) cells are exposed to CdTe QDs to monitor the QD internalization process. Both A- and C-QDs are internalized by RBL-2H3 cells mainly via endocytosis. CdTe QDs do not accumulate on the plasma membrane of living cells due to the fast endocytosis and the weakened electrostatic attraction in biological medium, resulting in low chance of passive penetration. The suspended cells after trypsin digestion take more QDs than the adherent cells. A-QDs cause lower cell viability than C-QDs, probably because the approach of positively charged QDs to cells is favored and the smaller aggregates of A-QDs.
اظهر المزيد [+] اقل [-]The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes
2022
Zhi, Yong | Chen, Xinyu | Cao, Guangxu | Chen, Fengjia | Seo, Ho Seong | Li, Fang
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
اظهر المزيد [+] اقل [-]Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems
2020
Rodrigues, Edmo Montes | Cesar, Dionéia Evangelista | Santos de Oliveira, Renatta | de Paula Siqueira, Tatiane | Tótola, Marcos Rogério
of bioaugmentation strategies are an obstacle for damage mitigation caused by oil spills in marine environments. Cells added to the contaminated sites are quickly lost by low adherence to the contaminants, rendering ineffective. This study used two hydrocarbonoclastic species - Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 cells - growing in mineral medium containing hexadecane to evaluate cell distribution in a crude-oil contaminated marine water. Cell affinity to hydrophobic compounds was quantified using Microbial Adhesion to Hydrocarbons test and analysis of fatty acids profile was performed using the Microbial Identification System. Bioremediation simulations were set up and cell populations of both strains were quantified by Fluorescent in situ Hybridization. R. rhodochrous and N. farcinica reached up to 97% and 60% of adhesion to hexadecane, respectively. The carbon source had more influence on the fatty acid profiles of both strains than the microbial species. The presence of 45.24% of 13:0 anteiso on total fatty acids in R. rhodochrous and 12.35% of saturated fatty acids with less than 13 carbons atoms in N. farcinica, as well as the occurrence of fatty alcohols only in presence of hexadecane in both species, are indicators that fatty acid changes are involved in the adaptation of the cells to remain at the water/oil interface. Cell quantification after bioremediation simulations revealed an increase in the density of both species, suggesting that the bioremediation strategies resulted on the increase of hydrocarbonoclastic species and up to 27.9% of all prokaryotic microbial populations in the microcosms were composed of R. rhodochrous or N. farcinica. These findings show the potential of application of these two bacterial strains in bioaugmentation of hydrocarbon-contaminated marine ecosystems.R. rhodochrous TRN7 and N. farcinica TRH1 hydrocarbonoclastic strains modify the fatty acid profile and increases density, optimizing hydrocarbons biodegradation.
اظهر المزيد [+] اقل [-]Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems
2020
Bellingeri, Arianna | Casabianca, Silvia | Capellacci, Samuela | Faleri, C. | Paccagnini, Eugenio | Lupetti, Pietro | Koelmans, A.A. | Penna, Antonella | Corsi, Ilaria
Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS–COOH NPs, 90 nm) for 15 days (1, 10, 50 μg/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms’ fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor. S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom's chain length and the adhesion of PS NPs onto the algal surface.
اظهر المزيد [+] اقل [-]In vivo assessment of dermal adhesion, penetration, and bioavailability of tetrabromobisphenol A
2017
Yu, Yunjiang | Li, Liangzhong | Li, Hongyan | Yu, Xiaowei | Zhang, Yanping | Wang, Qiong | Zhou, Zhixiang | Gao, Dandan | Ye, Hao | Lin, Bigui | Ma, Ruixue
Individuals are exposed to brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), on a daily basis because of their widespread usage. These compounds may have adverse effects on human health. In the present study, dermal absorption experiments were conducted in vivo to predict the adhesion, penetration, and bioavailability of TBBPA. TBBPA was administered to Wistar rats for 6 h by repeated dermal exposure at doses of 20, 60, 200, and 600 mg of TBBPA per kg of body weight (bw). The skin adhesion coefficient (AC) was calculated using a difference-value method and ranged from 0.12 to 3.25 mg/cm2 and 0.1 to 2.56 mg/cm2 for the male and female rats, respectively. The adhesion rate was 70.92%. According to Fick's first law of diffusion, the diffusion constant (D) was 1.4 × 10−4 cm2/h and the permeation coefficient (Kp) was 1.26 × 10−5 cm/h for TBBPA. TBBPA levels in the blood, urine, and feces of the male rats were significantly higher than those in the female rats. The dermal bioavailability of TBBPA was 24.71% for male rats and 20.05% for female rats 24 h after exposure.
اظهر المزيد [+] اقل [-]Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors
2016
Zhang, Yanyan | Dong, Sijun | Wang, Hongou | Tao, Shu | Kiyama, Ryoiti
Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and receptors and the suppression of their activities through other pathways, the mechanisms underlying the activities of PAHs remain unclear. Thus, standardized assay protocols for pathway-based assessments are considered to be important to overcome these issues.
اظهر المزيد [+] اقل [-]