خيارات البحث
النتائج 1 - 10 من 209
Hydraulic structures and quality of water as a biotope in ecosystem
2001
Batinic, B. | Jovanovic, B. (Univerzitet u Beogradu, Beograd (Yugoslavia). Gradjevinski fakultet)
This paper points out the role and significance of civil engineering in dealing with the problems related to the water environment. Examples presented consider hydraulic structures and their impact on the aeration level in the watercourse. Aeration and reaeration have the most important effect on the oxygen water quality parameters and therefore on the entire living world in the particular ecosystem.
اظهر المزيد [+] اقل [-]Yielding hydroxyl radicals in the Fenton-like reaction induced by manganese (II) oxidation determines Cd mobilization upon soil aeration in paddy soil systems
2022
Wang, Meng | Liu, Yongbing | Shi, Huading | Li, Shanshan | Chen, Shibao
As a redox-sensitive element, manganese (Mn) plays a critical role in Cd mobilization, especially in paddy soil. In an anoxic environment, the precipitation of Mn(II)-hydroxides specifically favors Cd retention, while draining the paddy fields results in substantial remobilization of Cd. However, how the change in Mn redox states during the periodical transit of anoxic to oxic systems affects Cd mobility remains unclear. In this study, we demonstrate that the radical effect generated during the oxidation of Mn(II)-hydroxides exerts a significant effect on the oxidative dissolution of Cd during the aeration of paddy soils. The extractable Cd concentration decreased rapidly during the reduction phases but increased upon oxidation, while Cd availability produced the opposite effect with soil pe + pH and the extractable Mn concentration. Inhibiting the oxidation of Mn(II)-containing phases by microbes suppressed the production of hydroxyl free radicals (•OH) and Cd mobilization in the drainage phase. Analysis of X-ray absorption spectroscopy and sequential extraction demonstrated that the transformation from the Mn phase of Mn(II) to Mn(III/IV) determines Cd solubility. Altogether, the oxidization of Mn(II)-hydroxides was associated with the generation of significant amounts of •OH. The dissolution of Mn(II)- incorporating phases lead to a net release of Cd into soils during soil aeration.
اظهر المزيد [+] اقل [-]Effects of mercury, organic carbon, and microbial inhibition on methylmercury cycling at the profundal sediment-water interface of a sulfate-rich hypereutrophic reservoir
2021
Fuhrmann, Byran C. | Beutel, Marc W. | O’Day, Peggy A. | Tran, Christian | Funk, Andrew | Brower, Sarah | Pasek, Jeffery | Seelos, Mark
Methylmercury (MeHg) produced by anaerobic bacteria in lakes and reservoirs, poses a threat to ecosystem and human health due to its ability to bioaccumulate in aquatic food webs. This study used 48-hr microcosm incubations of profundal sediment and bottom water from a sulfate-rich, hypereutrophic reservoir to assess seasonal patterns of MeHg cycling under various treatments. Treatments included addition of air, Hg(II), organic carbon, and microbial inhibitors. Both aeration and sodium molybdate, a sulfate-reducing bacteria (SRB) inhibitor, generally decreased MeHg concentration in microcosm water, likely by inhibiting SRB activity. The methanogenic inhibitor bromoethanesulfonate increased MeHg concentration 2- to 4- fold, suggesting that methanogens were potent demethylators. Pyruvate increased MeHg concentration under moderately reduced conditions, likely by stimulating SRB, but decreased it under highly reduced conditions, likely by stimulating methanogens. Acetate increased MeHg concentration, likely due to the stimulation of acetotrophic SRB. Results suggest that iron-reducing bacteria (IRB) were not especially prominent methylators and MeHg production at the sediment-water interface is elevated under moderately reduced conditions corresponding with SRB activity. In contrast, it is suppressed under oxic conditions due to low SRB activity, and under highly reduced conditions (<-100 mV) due to enhanced demethylation by methanogens.
اظهر المزيد [+] اقل [-]Biological nitrification inhibitor for reducing N2O and NH3 emissions simultaneously under root zone fertilization in a Chinese rice field
2020
Yao, Yuanlin | Zeng, Ke | Song, Yuzhi
Rice fields significantly contribute to the global N₂O and NH₃ emissions. Nitrification inhibitors (NIs) show promise in decreasing N₂O emission, but they can increase NH₃ volatilization under traditional broadcasting. Root zone fertilization (RZF) can mitigate NH₃ volatilization, but it may pose a high risk to N₂O emission. Additionally, most chemical NIs have limited availability and potential for environmental contamination, in contrast, biological NIs, such as methyl 3-(4-hydroxyphenyl) propionate (MHPP), are easily available and eco-friendly. However, the effects of RZF combined with MHPP on N₂O and NH₃ emissions are unknown. Therefore, a field experiment was conducted in a Chinese rice field with five treatments at 210 kg urea-N ha⁻¹ (BC: 3-split surface broadcasting; BC + MHPP: BC with MHPP; RZ, root zone fertilization; RZ + MHPP, RZF with MHPP; RZ + MHPP + NBPT, RZF with MHPP and NBPT). The results showed that although RZ eliminated NH₃ volatilization, it significantly increased total N₂O emission by 761% compared with BC due to the stimulation of nitrification by mid-season aeration (MSA) and the trigger of denitrification by a large amount of NO₃⁻. Nearly 90% N₂O was emitted at MSA stage for RZF treatments, and their N₂O fluxes were exponentially related to the soil NO₃⁻-N concentrations in the 7–20 cm deep soil layer. RZ + MHPP greatly reduced the peak values of N₂O flux due to the suppression of nitrification by MHPP and then less production of NO₃⁻ for denitrification, its total N₂O emission was 79% lower compared with that of RZ. However, RZ + MHPP + NBPT further increased the total N₂O emission by 1044% compared with that of BC. Compared to BC, the RZF practice reduced total NH₃ volatilization by 88–92% regardless use of NIs. RZF had no influence on CH₄ emissions and enhanced the rice yields. In conclusion, RZF + MHPP is a promising strategy for simultaneously reducing N₂O and NH₃ emissions in rice fields.
اظهر المزيد [+] اقل [-]Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives
2020
Sowani, Harshada | Kulkarni, Mohan | Zinjarde, Smita
A tropical soil Actinomycete, Gordonia amicalis HS-11, has been previously demonstrated to degrade unsaturated and saturated hydrocarbons (squalene and n-hexadecane, respectively) in an effective manner. In present study, G. amicalis HS-11 degraded 92.85 ± 3.42% of the provided diesel oil [1% (v/v)] after 16 days of aerobic incubation. The effect of different culture conditions such as carbon source, nitrogen source, pH, temperature, and aeration on degradation was studied. During degradation, this Actinomycete synthesized surface active compounds (SACs) in an extracellular manner that brought about a reduction in surface tension from 69 ± 2.1 to 30 ± 1.1 mN m⁻¹ after 16 days. The morphology of cells grown on diesel was monitored by using a Field Emission Scanning Electron Microscope. Diesel-grown cells were longer and clumped with smooth surfaces, possibly due to the secretion of SACs. The interaction between the cells and diesel oil was studied by Confocal Laser Scanning Microscope. Some cells were adherent on small diesel droplets and others were present in the non-attached form thus confirming the emulsification ability of this organism. The fatty acid profiles of the organism grown on diesel oil for 48 h were different from those on Luria Bertani Broth. The genotoxicity and cytotoxicity of diesel oil before and after degradation were determined. Cytogenetic parameters such as mitotic index (MI); mitosis distribution and chromosomal aberration (type and frequency) were assessed. Oxidative stress was evaluated by measuring levels of catalase, superoxide dismutase and concentration of malondialdehyde. On the basis of these studies it was deduced that the degradation metabolites were relatively non-toxic.
اظهر المزيد [+] اقل [-]Aerosols from a wastewater treatment plant using oxidation ditch process: Characteristics, source apportionment, and exposure risks
2019
Yang, Dang | Han, Yunping | Liu, Junxin | Li, Lin
The study of aerosol dispersion characteristics in wastewater treatment plants (WWTPs) has attracted extensive attention. Oxidation ditch (OD) is a commonly implemented process during biological wastewater treatment. This study assessed the component characteristics, source apportionment, and exposure risks of aerosols generated from a WWTP using the OD process (AWO). The results indicated that the aeration part of oxidation ditch (ODA) exhibited the highest concentrations and proportions of the respiratory fractions (RF) of bacteria, Enterobacteriaceae, Staphylococcus aureus, and Pseudomonas aeruginosa. Some pathogenic or opportunistic-pathogenic bacteria and carcinogenic metal(loid)s were detected in the AWO. The source apportionment results indicated that the outdoor wastewater treatment processes and ambient air contributed to the constitution of the AWO. The indoor aerosols were mainly constituted by composition of the wastewater treatment process such as the sludge dewatering room (SDR). The pathogenic or opportunistic-pathogenic bacteria with eight genera (Colinsella, Dermatophilus, Enterobactor, Erycherichia-Shigella, Ledionella, Selenomonas, Xanthobacter, and Veillonella) were largely attributed to wastewater or sludge. The risk assessment suggested that inhalation was the main exposure pathway for aerosols (including bacteria and metal(loid)s). Additionally, As indicated the highest non-carcinogenic risks. Furthermore, As, Cd, and Co were associated with high carcinogenic risks. The ODA and sludge dewatering room (SDR) indicated the highest carcinogenic and non-carcinogenic risks of metal(loid)s, respectively. Thus, the AWO should be sufficiently researched and monitored to mitigate their harmful effects on human health, particularly with regard to the health of the site workers.
اظهر المزيد [+] اقل [-]Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden
2019
Pasalari, Hasan | Ataei-Pirkooh, Angila | Aminikhah, Mahdi | Jafari, Ahmad Jonidi | Farzadkia, Mahdi
From a health prospective, it is critical to provide a comprehensive model which integrates all the parameters involved in virus transmission and its consequences on human body. In order to estimate the health risks, for workers and residents, associated with an exposure airborne viruses emitted from a wastewater treatment (WWTP), the concentration levels of viruses in emitted bioaerosols over a twelve-month period were measured by real-time polymerase chain reaction (RT-PCR). A combined Gaussian plum dispersion model and quantitative microbial risk assessment (QMRA) with Monte-Carlo simulation served as suitable explanatory tools to estimate the risk of acquiring gastrointestinal illness (GI) due to exposure to air containing Rotavirus (RoV) and Norovirus (NoV) bioaerosols. Additionally, DALY metric was applied to quantify the disability and mortality for workers and residents. RoV and NoV were detected above aeration tank with annual mean concentration 27 and 3099 (Viruses/m³.h), respectively. The medium calculated DALY indicator based on viral loads in contaminant source (RoV:5.76 × 10⁻² and NoV:1.23 × 10⁻¹) and estimated in different distances away (300–1000 m) (RoV:2.87 × 10⁻²- 2.75 × 10⁻² and NoV:1.14 × 10⁻¹-1.13 × 10⁻¹) were markedly higher than the threshold values recommended by US EPA (10⁻⁴ DALY pppy) and WHO (10⁻⁶ DALY pppy). The sensitivity analysis highlighted dose exposure and disease burden per case (DBPC) as two most influential factors for both workers and residents following exposure to two pathogens of concern. Due to high resistance and high concentration in the environment, the presence of RoV and NoV can intensify the consequences of diarrhea especially for children under five years of age; A comprehensible and transparent presentation of DALYs and QMRA can help decision makers and responsibilities to justify the priorities of exposure to wastewater in comparison with other risks of daily life.
اظهر المزيد [+] اقل [-]Biofiltration of methane using hybrid mixtures of biochar, lava rock and compost
2018
La, Helen | Hettiaratchi, J. Patrick A. | Achari, Gopal | Verbeke, Tobin J. | Dunfield, Peter F.
Using hybrid packing materials in biofiltration systems takes advantage of both the inorganic and organic properties offered by the medium including structural stability and a source of available nutrients, respectively. In this study, hybrid mixtures of compost with either lava rock or biochar in four different mixture ratios were compared against 100% compost in a methane biofilter with active aeration at two ports along the height of the biofilter. Biochar outperformed lava rock as a packing material by providing the added benefit of participating in sorption reactions with CH4. This study provides evidence that a 7:1 volumetric mixture of biochar and compost can successfully remove up to 877 g CH4/m3·d with empty-bed residence times of 82.8 min. Low-affinity methanotrophs were responsible for the CH4 removal in these systems (KM(app) ranging from 5.7 to 42.7 µM CH4). Sequencing of 16S rRNA gene amplicons indicated that Gammaproteobacteria methanotrophs, especially members of the genus Methylobacter, were responsible for most of the CH4 removal. However, as the compost medium was replaced with more inert medium, there was a decline in CH4 removal efficiency coinciding with an increased dominance of Alphaproteobacteria methanotrophs like Methylocystis and Methylocella. As a biologically-active material, compost served as the sole source of nutrients and inoculum for the biofilters which greatly simplified the operation of the system. Higher elimination capacities may be possible with higher compost content such as a 1:1 ratio of either biochar or lava rock, while maintaining the empty-bed residence time at 82.8 min.
اظهر المزيد [+] اقل [-]Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China)
2016
Yao, Yiming | Chang, Shuai | Sun, Hongwen | Gan, Zhiwei | Hu, Hongwei | Zhao, Yangyang | Zhang, Yufen
Per- and polyfluoroalkyl substances (PFASs) were detected in the atmosphere of a source region in Tianjin, China. Fluorotelomer alcohols (FTOHs) were the dominant neutral PFASs in the atmosphere with total concentrations of 93.6-131 pg/m3 and 8:2 FTOH contributing the most, whereas perfluorooctane sulfonamide derivatives (PFOSAs) were two magnitudes lower or undetected. In comparison, ionic PFASs (perfluoroalkyl carboxyl acids (PFCAs)) in the atmosphere were detected at similar or even higher levels. At wastewater treatment plants (WWTPs), the air over influent was found with higher levels of FTOHs than over aeration tank and effluent; whereas in the air over the aeration tank, the concentrations of PFOSAs and nonvolatile ionic PFASs substantially increased, suggesting a possible direct release of ionic PFASs to the atmosphere besides the atmospheric conversion from volatile precursors. In the air phase, a low proportion (1-5%) of PFCAs was subjected to dry deposition in the source region. Interestingly, the dry-deposition-to-bulk-air ratios of PFCA analogues were the lowest at medium chain lengths (C8 and C9) and increased with either shorter or longer chain length. The extraordinary affinity of shorter-chain PFCAs (C6-C7) to particles was presumed to be due to their smaller molecular size favoring the interactions between the carboxyl head groups and specific sorption sites on particulate matter.
اظهر المزيد [+] اقل [-]The contribution of waste water treatment plants to PBDEs in ambient air
2012
Martellini, Tania | Jones, K. C. (Kevin C.) | Sweetman, Andy | Giannoni, Martina | Pieri, Francesca | Cincinelli, Alessandra
Air samples were collected at different sites in and around two wastewater treatment plants (WWTPs) located in central Italy to determine the concentrations, compositional profiles and contribution to ambient levels of eight polybrominated diphenyl ethers (PBDEs). The investigated WWTPs were selected as they treat industrial wastewater produced by local textile industries along with municipal wastewater. PBDE concentrations within the WWTPs were higher than those measured at reference sites located 4 and 5km away with BDE-209 dominating the BDE congener composition in all air samples in 2008. Ambient PBDE concentrations measured in and around the WWTPs and estimates of emissions from aeration tanks suggest that WWTPs are sources of PBDEs to ambient air. Principal component analysis and Pearson correlations confirmed this result. The effect of distance from the plant and wind direction on atmospheric concentrations was also investigated. Although the primary fate of PBDEs in WWTPs will be partitioning to sewage sludge, this study suggests that plants can provide a measurable source of these compounds to local ambient air.
اظهر المزيد [+] اقل [-]