خيارات البحث
النتائج 1 - 10 من 47
Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil النص الكامل
2013
Elazhari-Ali, Abdulmagid | Singh, Arvind K. | Davenport, Russell J. | Head, I. M. (Ian M.) | Werner, David
We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition.
اظهر المزيد [+] اقل [-]Spatial and temporal variations in pentachlorophenol dissipation at the aerobic–anaerobic interfaces of flooded paddy soils النص الكامل
2013
Lin, Jiajiang | Xu, Yan | Brookes, Philip C. | He, Yan | Xu, Jianming
Pentachlorophenol (PCP) dissipation occurs naturally in flooded soils and although dissipation half-lives vary between soil profiles at the millimeter-scale the reason is poorly understood. Vertical variations of PCP dissipation were investigated in three typical Chinese paddy soils; Soil 1 (Umbraqualf), Soil 2 (Plinthudult) and Soil 3 (Tropudult). The soil depth was divided into a surface and a deep layer based upon different PCP dissipations in the surface layer of 40–93, 42–88 and 16–100% for Soils 1–3 respectively. In the deep layer, PCP was greatly dissipated in Soil 2, but much less in Soil 1 and Soil 3. Correlation analysis indicated that SO42− and Fe(III) were negatively related to PCP dissipation. SO42− and Cl- were highly mobile in the flooded soil profiles. Fe(III) reduction increased with increasing soil depth, and was inhibited by high SO42− concentrations.
اظهر المزيد [+] اقل [-]Pulsed gas injection: A minimum effort approach for enhanced natural attenuation of chlorobenzene in contaminated groundwater النص الكامل
2009
Balcke, Gerd Ulrich | Paschke, Heidrun | Vogt, Carsten | Schirmer, Mario
Chlorobenzene-contaminated groundwater was used to assess pulsed gas sparging as a minimum effort aeration strategy to enhance intrinsic natural attenuation. In contrast to existing biosparging operations, oxygen was supplied at minimum rate by reducing the gas injection frequency to 0.33 day⁻¹. Field tests in a model aquifer were conducted in a 12 m long reactor, filled with indigenous aquifer material and continuously recharged with polluted groundwater over 3 years. The closed arrangement allowed yield balances, cost accounting as well as the investigation of spatial distributions of parameters which are sensitive to the biodegradation process. Depending on the injection frequency and on the gas chosen for injection (pure oxygen or air) oxygen-deficient conditions prevailed in the aquifer. Despite the limiting availability of dissolved oxygen in the groundwater, chlorobenzene degradation under oxygen-deficient conditions proved to be more effective than under conditions with dissolved oxygen being available in high concentrations. Minimum rate gas sparging resulted in sustained biodegradation of chlorobenzene in a polluted groundwater aquifer.
اظهر المزيد [+] اقل [-]Impacts of microbial redox conditions on the phase distribution of pyrene in soil-water systems النص الكامل
2008
Kim, H.S. | Roper, J.C. | Pfaender, F.K.
Variations in the soil/sediment organic matter (SOM)-hydrophobic organic contaminant (HOC) bindings upon microbially mediated redox conditions were examined. While the extractability of pyrene associated with soil declined after its biodegradation began during aerobic incubation, its variations were almost constant (±3.0-4.4%) during anoxic/anaerobic incubations. The dissolved organic matter released from the soil incubated under highly reduced conditions became more humified and aromatic, had a higher average molecular weight, and was more polydispersed compared to that obtained from oxic incubation, similar to the SOM alterations in the early stage of diagenesis (humification). The concentrations of pyrene in the aqueous phase increased significantly during the soil incubations under highly reduced conditions due to its favorable interaction with the altered DOM. Our results suggest that the microbially mediated redox conditions have significant impacts on SOM and should be considered for the transport, fate, bioavailability, and exposure risk of HOCs in the geo-environments. HOC association within soil/sediment matrix can be controlled by microbially mediated redox conditions.
اظهر المزيد [+] اقل [-]Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions? النص الكامل
2011
The effects of arbuscular mycorrhizal fungi (AMF) –Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60mgAskg⁻¹. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p<0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses.
اظهر المزيد [+] اقل [-]Dissipation of oxytetracycline in soils under different redox conditions النص الكامل
2009
Yang, Ji-Feng | Ying, Guang-Guo | Zhou, Li-Jun | Liu, Shan | Zhao, Jian-Liang
This study investigated the dissipation kinetics of oxytetracycline in soils under aerobic and anoxic conditions. Laboratory experiments showed that the dissipation of oxytetracycline in soil followed firstorder reaction kinetics and its dissipation rates decreased with increasing concentration. Oxytetracycline dissipated faster in soil under aerobic conditions than under anoxic conditions. The half-lives for oxytetracycline in soil under aerobic conditions ranged between 29 and 56 days for non-sterile treatments and 99-120 days for sterile treatments, while under anoxic conditions the half-lives of oxytetracycline ranged between 43 and 62 days in the non-sterile soil and between 69 and 104 days in the sterile soil. This suggests microbes can degrade oxytetracycline in agricultural soil. Abiotic factors such as strong sorption onto soil components also played a role in the dissipation of oxytetracycline in soil.
اظهر المزيد [+] اقل [-]Fate and risk assessment of sulfonamides and metabolites in urban groundwater النص الكامل
2020
Jurado, Anna | Margareto, Alejandro | Pujades, Estanislao | Vázquez-Suñé, Enric | Díaz-Cruz, M. Silvia
Antibiotics, such as sulfonamides (SAs), have recently raised concern as wastewater treatment plants (WWTPs) partly remove them, and thus, SAs continuously enter the aquifers. In this context, the aims of this work are to (1) investigate the temporal evolution of SAs and metabolites in an urban aquifer recharged by a polluted river; (2) identify the potential geochemical processes that might affect SAs in the river-groundwater interface and (3) evaluate the ecological and human health risk assessment of SAs. To this end, 14 SAs and 4 metabolites were analyzed in river and urban groundwater from the metropolitan area of Barcelona (NE, Spain) in three different sampling campaigns. These substances had a distinct behavior when river water, which is the main recharge source, infiltrates the aquifer. Mixing of the river water recharge into the aquifer drives several redox reactions such as aerobic respiration and denitrification. This reducing character of the aquifer seemed to favor the natural attenuation of some SAs as sulfamethoxazole, sulfapyridine, and sulfamethizole. However, most of the SAs detected were not likely to undergo degradation and adsorption because their concentrations were constant along groundwater flow path. In fact, the intensity of SAs adsorption is low as the retardation factors are close to 1 at average groundwater pH of 7.2 for most SAs.Finally, risk quotients (RQs) are used to evaluate the ecological and human health risks posed by single and mixture of SAs in river water and groundwater, respectively. Life-stage RQs of the SAs detected in groundwater for the 8 age intervals were low, indicating that SAs and their mixture do not pose any risk to human beings. Concerning the environmental risk assessment, SAs do not pose any risk for algae, fish and crustaceans as the RQs evaluated are further lower than 0.1.
اظهر المزيد [+] اقل [-]Impact of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges النص الكامل
2018
Fang, James K.H. | Rooks, Christine A. | Krogness, Cathinka M. | Kutti, Tina | Hoffmann, Friederike | Bannister, Raymond J.
To meet the increasing global energy demand, expanding exploration for oil and gas reserves as well as associated drilling activities are expected in the Arctic-boreal region where sponge aggregations contribute to up to 90% of benthic biomass. These deep-water sponges along with their microbial endobionts play key roles in the nitrogen cycling in Arctic-boreal ecosystems. This study aimed to investigate the effects of drilling discharges and associated sediment resuspension events on net fluxes of oxygen, ammonium, nitrate and nitrite in three common deep-water sponge species in the form of explants. Sponges were exposed to suspended bentonite and barite, the primary particulate compounds in drilling waste, as well as suspended natural sediment particles for a period of 33 days (on average 10 mg L−1 for 12 h day−1). The exposure period was followed by a pollution abatement period for a further 33 days. No sponge mortality was observed during the experiment. However, exposure to these particles, especially to barite, led to reduced oxygen consumption by up to 33% that was linearly correlated with reduced nitrite/nitrate release by the sponges. The changes in net fluxes were accompanied by decreased tissue oxygenation by up to 54% within the sponges. These findings reveal the effects of fine particles on sponge metabolic processes by reducing aerobic respiration and microbial nitrification, and possibly by favouring anaerobic processes such as microbial denitrification. Most of the sponge responses recovered to their control levels upon the pollution abatement period, but the effects caused by barite may not be reversible. Our findings provide the first insight into the ecological consequences of oil and gas drilling activities on sponge-mediated nitrogen cycling in the Arctic-boreal region.
اظهر المزيد [+] اقل [-]Acute exposure to Buenos Aires air particles (UAP-BA) induces local and systemic inflammatory response in middle-aged mice: A time course study النص الكامل
2016
Orona, Nadia S. | Ferraro, Sebastián A. | Astort, Francisco | Morales, Celina | Brites, Fernando | Boero, Laura | Tiscornia, Gisela | Maglione, Guillermo A. | Saldiva, Paulo H.N. | Yakisich, Sebastian | Tasat, Deborah R.
Exposure to air particulate matter (PM) is associated with increased cardiovascular morbimortality. However, PM doesn't affect equally to all people, being the old cohort the most susceptible and studied. We hypothesized that another specific life phase, the middle-aged subpopulation, may be negatively affected. Therefore, the aim of this study was to analyze in vivo the acute biological impact of two environmental particles, Urban Air Particles from Buenos Aires and Residual Oil Fly Ash, on the cardiorespiratory system of middle-aged mice, evaluating oxidative metabolism and inflammation. Both PM provoked a local and systemic inflammatory response, leading to a reduced alveolar area in the lung, an epicard inflammation in the heart, an increment of IL-6, and a reduction on PON 1 activity in serum of middle-aged animals. The positive correlation of local parameters with systemic markers of oxidative stress and inflammation could be responsible for associations of cardiovascular morbimortality in this subpopulation.
اظهر المزيد [+] اقل [-]Uptake, metabolism and sub-lethal effects of BDE-47 in two estuarine invertebrates with different trophic positions النص الكامل
2016
Díaz-Jaramillo, M. | Miglioranza, K.S.B. | Gonzalez, M. | Barón, E. | Monserrat, J.M. | Eljarrat, E. | Barceló, D.
Two microcosm types -sediment-biota and biota-biota- were constructed to simulate different pathways of BDE-47 uptake, metabolism and oxidative stress effects in two key estuarine invertebrates (polychaete Laeonereis acuta and crab Cyrtograpsus angulatus). In the sediment-biota experiment, both species were exposed to spiked sediments; an environmentally reported and a high concentration of BDE-47 for 2 weeks. In the biota-biota experiment, crabs were fed with polychaetes pre-exposed to BDE-47 in the sediment-biota experiment. The sediment-biota experiment first revealed that polychaetes significantly accumulated BDE-47 (biota-sediment accumulation factor >2; p < 0.05) to a much greater extent than the crab organs (muscle, hepatopancreas, gills) at both sediment concentrations. For oxidative stress responses, polychaete and crab tissues exposed to spiked sediment showed a significant increase (p < 0.05) of only glutathione S-transferase (GST) activity with respect to controls in both BDE-47 concentrations. No lipid peroxidation (TBARS) or total antioxidant capacity (ACAP) changes were evident in the species or organs exposed to either BDE-47 sediment concentration. The biota-biota experiment showed that feeding crabs with pre-exposed polychaetes caused BDE-47 accumulation in organs as well as significant amounts of BDE-47 eliminated through feces (p < 0.05). Unlike the sediment-biota exposure, crabs fed with pre-exposed BDE-47 polychaetes showed the most conspicuous oxidative stress responses. Significant changes in GST and ACAP in both hepatopancreas and gills, in addition to enhanced TBARS levels in the hepatopancreas with respect to controls (p < 0.05), revealed that BDE-47 assimilated by invertebrates represents a potential source of toxicity to their predators. No methoxylated metabolites (MeO-PBDEs) were detected during BDE-47 metabolism in the invertebrates in either of the two different exposure types. In contrast, hydroxylated metabolites (OH-PBDEs) were detected in polychaetes and crab organs/feces in both experiments. Our results demonstrate that PBDE hydroxylation is one of the main biotransformation routes of BDE-47 in estuarine animals, which could be associated with the oxidative stress responses found.
اظهر المزيد [+] اقل [-]