خيارات البحث
النتائج 1 - 10 من 476
Anthropogenic nitrate attenuation versus nitrous oxide release from a woodchip bioreactor
2022
White, Shane A. | Morris, Shaun A. | Wadnerkar, Praktan D. | Woodrow, Rebecca L. | Tucker, James P. | Holloway, Ceylena J. | Conrad, Stephen R. | Sanders, Christian J. | Hessey, Samantha | Santos, Isaac R.
Nitrogen loss via overland flow from agricultural land use is a global threat to waterways. On-farm denitrifying woodchip bioreactors can mitigate NO₃⁻ exports by increasing denitrification capacity. However, denitrification in sub-optimal conditions releases the greenhouse gas nitrous oxide (N₂O), swapping the pollution from aquatic to atmospheric reservoirs. Here, we assess NO₃⁻-N removal and N₂O emissions from a new edge-of-field surface-flow bioreactor during ten rain events on intensive farming land. Nitrate removal rates (NRR) varied between 5.4 and 76.2 g NO₃⁻-N m⁻³ wetted woodchip d⁻¹ with a mean of 30.3 ± 7.3 g NO₃⁻-N m⁻³. The nitrate removal efficiency (NRE) was ∼73% in ideal hydrological conditions and ∼18% in non-ideal conditions. The fraction of NO₃⁻-N converted to N₂O (rN₂O) in the bioreactor was ∼3.3 fold lower than the expected 0.75% IPCC emission factor. We update the global bioreactor estimated Q₁₀ (NRR increase every 10 °C) from a recent meta-analysis with previously unavailable data to >20 °C, yielding a new global Q₁₀ factor of 3.1. Mean N₂O CO₂-eq emissions (431.9 ± 125.4 g CO₂-eq emissions day⁻¹) indicate that the bioreactor was not significantly swapping aquatic NO₃⁻ for N₂O pollution. Our estimated NO₃⁻-N removal from the bioreactor (9.9 kg NO₃⁻-N ha⁻¹ yr⁻¹) costs US$13.14 per kg NO₃⁻-N removed and represents ∼30% NO₃⁻-N removal when incorporating all flow and overflow events. Overall, edge-of-field surface-flow bioreactors seem to be a cost-effective solution to reduce NO₃⁻-N runoff with minor pollution swapping to N₂O.
اظهر المزيد [+] اقل [-]Combined effects of degradable film fragments and micro/nanoplastics on growth of wheat seedling and rhizosphere microbes
2022
Ren, Xinwei | Wang, Lan | Tang, Jingchun | Sun, Hongwen | Giesy, John P.
Multiple sources of microplastics (MPs) in farmland could result in the changing of microbial community and the plant growth. Most studies of MPs in agricultural system have focused on the effects of single types of MPs on growth of plants, while neglect interactions between multiple types of MPs. In this study a pot-experiment was conducted to investigate the effects of multiple types of MPs, including polystyrene beads: M1, 5 μm, M2, 70 nm and degradable mulching film (DMF) fragments on growth of wheat seedlings and associated rhizosphere microbial community. CKD (adding DMF) significantly reduced plant height and base diameter of wheat seedlings. DMF in combination with M2, significantly increased plant height and aboveground biomass, but decreased the base diameter. Actinobacteria was the dominant taxa in the rhizosphere bacterial community in various treatments. PCoA analysis showed that the bacterial composition in M2HD (100 mg kg⁻¹ M² with DMF) was significantly different from that of CKD and M2LD (10 mg kg⁻¹ M² with DMF). At the level of genera, the dominant fungi in CKD and M2LD were in the genus Fusarium, which is the cause of wheat fusarium blight and Alternaria, which results in decreased base diameter. In CK (control group) and M2HD, Blastobotrys exhibited the greatest abundance, which assisted wheat seedlings in resisting Verticillium disease. Cluster and PCoA analysis showed the fungal composition in CKD was significantly different from CK, M2LD and M2HD. These findings suggest MPs potentially have selective effects on pathogens that affect growth of plants and potentially safety of the food.
اظهر المزيد [+] اقل [-]Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values
2022
Li, Cheng | Zhang, Chaosheng | Yu, Tao | Liu, Xu | Yang, Yeyu | Hou, Qingye | Yang, Zhongfang | Ma, Xudong | Wang, Lei
In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
اظهر المزيد [+] اقل [-]Correlative distribution of DOM and heavy metals in the soils of the Zhangxi watershed in Ningbo city, East of China
2022
Wang, Zhe | Han, Ruixia | Muhammad, Azeem | Guan, Dong-Xing | Zama, Eric | Li, Gang
In peri-urban critical zones, soil ecosystems are highly affected by increasing urbanization, causing probably an intense interaction between dissolved organic matter (DOM) and heavy metals in soil. Such interaction is critical for understanding the biogeochemical cycles of both organic matter and heavy metals in these zones. However, limited research has reported the correlative distribution of DOM and heavy metals at high seasonal and spatial resolutions in peri-urban critical zones. In this study, 160 soil samples were collected from the farmland and forestland of Zhangxi watershed, in Ningbo, eastern China during spring, summer, fall and winter four seasons. UV–visible absorption and fluorescent spectroscopy were used to explore the optical characteristics of DOM. The results indicated a mixture of exogenous and autogenous sources of DOM in the Zhangxi watershed, while DOM in farmland exhibited a higher degree of aromaticity and humification than that in forestland. Fluorescent results showed that humic acid-like, fulvic acid-like and microbial-derived humic-like fractions were mostly affected by seasons. The distribution of heavy metals was affected mainly by land-use changes and seasons. Correlation analysis between heavy metals and DOM characteristics and components suggested that aromatic and humic substances were more favorable in binding with EDTA extractable Ni, Cu, Zn and Cd. The bioavailable Cd and Pb decreased due to binding with humic fractions, indicating its great effects on the bioavailability of Cd and Pb. Overall, these findings provide an insight into the correlative distributions of DOM and heavy metals in peri-urban areas, thereby highlighting their biogeochemical cycling in the soil environment.
اظهر المزيد [+] اقل [-]The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants
2022
Du, Jingqi | Liu, Jinxian | Jia, Tong | Chai, Baofeng
Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the major channel for their decontamination from different environments. Aerobic and anaerobic biodegradations of PAHs in batch reactors with single or multiple bacterial strains have been intensively studied, but the cooperative mechanism of functional PAH-degrading populations at the community level under field conditions remains to be explored. We determined the composition of PAH-degrading populations in the bacterial community and PAHs in farmland and wasteland soils contaminated by coking plants using high-throughput sequencing and high-performance liquid chromatography (HPLC), respectively. The results indicated that the PAH content of farmland was significantly lower than that of wasteland, which was attributed to the lower content of low molecular weight (LMW) PAHs and benzo [k]fluoranthene. The soil physicochemical properties were significantly different between farmland and wasteland. The naphthalene content was related to the soil organic carbon (SOC) and pH, while phenanthrene was related to the nitrate nitrogen (NO₃⁻-N) and water content (WC). The pH, nitrite (NO₂⁻-N), SOC, NO₃⁻-N and WC were correlated with the content of high molecular weight (HMW) PAHs and total PAHs. The relative abundances of the phyla Actinobacteria, Chloroflexi, Acidobacteria, and Firmicutes and the genera Nocardioides, Bacillus, Lysobacter, Mycobacterium, Streptomyces, and Steroidobacter in farmland soil were higher than those in wasteland soil. The soil physicochemical characteristics of farmland increased the diversities of the PAH degrader and total bacterial communities, which were significantly negatively related to the total PAHs and LMW PAHs. Subsequently, the connectivity and complexity of the network in farmland were lower than those in wasteland, while the module containing a module hub capable of degrading PAHs was identified in the network of farmland soil. Structural equation modelling (SEM) analysis showed that the soil characteristics and optimized abundance and diversity of the bacterial community in farmland were beneficial for the dissipation efficiency of PAHs.
اظهر المزيد [+] اقل [-]Spatial occurrence and composition profile of organophosphate esters (OPEs) in farmland soils from different regions of China: Implications for human exposure
2021
The environmental load of organophosphate ester (OPE) flame retardants has caused a series of problems due to their extensive use. The soil matrix, as an ultimate sink for organic pollution, plays a vital part in the fate of OPEs in the environment. In this study, the spatial occurrence, composition profile and health risk of 13 OPE species in farmland soils from four provinces of China were characterized. Excluding tris(2,3-dibromopropyl) phosphate (TDBPP) and ethylhexyl diphenyl phosphate (EHDPP), the remaining eleven OPEs had a high detection frequency (DF) ranging from 60% to 100%. The range of total OPE (ΣOPE) concentrations were 62.3–394 ng/g dry weight (dw), with a median of 228 ng/g dw. Among these OPEs, tris(2-ethylhexyl) phosphate (TEHP) with a median of 143 ng/g dw) was the predominant species, followed by tricresyl phosphate (TCP; median of 20.1 ng/g dw) and tris(2-chloroethyl) phosphate (TCEP; median of 17.9 ng/g dw). In terms of geographical distribution, significantly lower OPEs levels were found in samples from Heilongjiang (159 ± 47.0 ng/g dw) than in those of Guangxi (264 ± 66.0 ng/g dw), Henan (252 ± 74.5 ng/g dw) and Hubei (242 ± 52.8 ng/g dw) provinces. Principal component analysis and Spearman’s correlations were used to reveal potential sources of OPEs in the different provincial regions. Health risk exposure to OPEs in farmland soils was at an acceptable level (<1.20 × 10⁻⁵ for non-carcinogenic risk to children as the most sensitive age group; and <6.47 × 10⁻¹⁰ for carcinogenic risk to adults as the most sensitive age group) at the present detected concentrations. However, TCEP and TEHP, the predominant risk contributors, should be paid more attention.
اظهر المزيد [+] اقل [-]Application of cadmium prediction models for rice and maize in the safe utilization of farmland associated with tin mining in Hezhou, Guangxi, China
2021
Yang, Yeyu | Li, Cheng | Yang, Zhongfang | Yu, Tao | Jiang, Hongyu | Han, Min | Liu, Xu | Wang, Jue | Zhang, Qizuan
Cadmium (Cd) contamination in soil and crops caused by mining activities has become a prevalent concern in the world. Given that different crops have varying Cd bioaccumulation factors, crops with low Cd bioaccumulation abilities can be selected for the safe usage of Cd -contaminated lands. This study aimed to investigate Cd contamination in soil and crops and the influencing factors of soil Cd activity in a tin mining area (TMA) and control area (CA) and to put forward suggestions for the safe usage of farmlands by developing prediction models of Cd content in different crop grains. We collected 72 and 40 pairs of rice and maize grain samples, respectively, along with their rhizosphere soil samples and 6176 topsoil samples. The results showed that compared with the CA, the Cd pollution was more severe in the cultivated soil and crop grains around TMA. Furthermore, rice has a strong ability to transport Cd from soil to grains, whereas maize has a poor Cd uptake ability. The total organic carbon, CaO, pH, and Mn in soil play key roles in the transfer of Cd from soil to crop grains. Using these parameters and Cd concentration in soil, two sets of accurate Cd prediction models were developed for maize and rice. Based on the Cd concentration in the topsoil and predicted Cd concentration in crop grains, the safe utilization scheme of farmland was proposed. The proportions of priority protection, safe exploitation, planting adjustment, and strict control were 72.59%, 22.77%, 3.16%, and 1.48% in the TMA, respectively. The values reached 80.51% (priority protection), 19.12% (safe exploitation), 0.37% (planting adjustment), and 0% (strict control) in the CA. Thus, given the difference between Cd accumulation in rice and maize, adjustment of planting crops in contaminated farmlands can be applied to maximize the use of farmland resources.
اظهر المزيد [+] اقل [-]Quantitative analysis of the main sources of pollutants in the soils around key areas based on the positive matrix factorization method
2021
Qiao, Pengwei | Dong, Nan | Yang, Sucai | Gou, Yaling
Quantitative identification of the main sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in soils around multiple types of key areas is of great significance for blocking pollution sources. However, there is a lack of more comprehensive relevant research. In this study, Beijing was taken as the research area and four main sources were identified using the positive matrix factorization (PMF) method. The concentration of Pb, PAHs, Cr, and Hg in soils was significantly affected by the presence of landuse type, road traffic, natural factor, and industrial production, respectively, and the farmland, distance to main road, Proterozoic Changcheng-Jixian parent material and cinnamon soil type, and the gross industrial production make greater contributions to these four factors respectively than other variables. Moreover, the uncertainty of the PMF indicates that this four-factor PMF solution is stable and appropriate. These results provide support for the comprehensive control of soil environmental risks.
اظهر المزيد [+] اقل [-]Assessment of extrinsic and intrinsic influences on water quality variation in subtropical agricultural multipond systems
2021
Chen, Wenjun | Nover, Daniel | Xia, Yongqiu | Zhang, Guangxin | Yen, Haw | He, Bin
Understanding wetland water quality dynamics and associated influencing factors is important to assess the numerous ecosystem services they provide. We present a combined self-organizing map (SOM) and linear mixed-effects model (LMEM) to relate water quality variation of multipond systems (MPSs, a common type of non-floodplain wetlands in agricultural regions of southern China) to their extrinsic and intrinsic influences for the first time. Across the 6 test MPSs with environmental gradients, ammonium nitrogen (NH₄⁺-N), total nitrogen (TN), and total phosphate (TP) almost always exceeded the surface water quality standard (2.0, 2.0, and 0.4 mg/L, respectively) in the up- and midstream ponds, while chlorophyll-a (Chl-a) exhibited hypertrophic state (≥28 μg/L) in the midstream ponds during the wet season. Synergistic influences explained 69±12% and 73±10% of the water quality variations in the wet and dry season, respectively. The adverse, extrinsic influences were generally 1.4, 6.9, 3.2, and 4.3 times of the beneficial, intrinsic influences for NH₄⁺-N, nitrate nitrogen (NO₃⁻-N), TP, and potassium permanganate index (CODMₙ), respectively, although the influencing direction and degree of forest and water area proportion were spatiotemporally unstable. While CODMₙ was primarily linked with rural residential areas in the midstream, higher TN and TP concentrations in the up- and midstream were associated with agricultural land, and NH₄⁺-N reflected a small but non-negligible source of free-range poultry feeding. Pond surface sediments exhibited consistent, adverse effects with amplifications during rainfall, while macrophyte biomass can reflect the biological uptake of CODMₙ and Chl-a, especially in the mid- and downstream during the wet season. Our study advances nonpoint source pollution (NPSP) research for small water bodies, explores nutrient “source-sink” dynamics, and provides a timely guide for rural planning and pond management. The modelling procedures and analytical results can inform refined assessment of similar NFWs elsewhere, where restoration efforts are required.
اظهر المزيد [+] اقل [-]Human impact on C/N/P accumulation in lake sediments from northeast China during the last 150 years
2021
Bao, Kunshan | Zhang, Yifeng | Zaccone, Claudio | Meadows, Michael E.
Lakes and lake sediments are significant components of the global carbon (C) cycle, and may store very large amounts of organic matter. Carbon sequestration in lakes is subject to substantial temporal and spatial variation and may be strongly affected by human activities. Here, we report accumulation rates (AR) of organic C (OC), total nitrogen (TN) and total phosphorous (TP), and investigate their responses to anthropogenic impact over the past 150 years by analyzing 62 sediment cores from 11 shallow lakes in the Songnen Plain, northeast China. From the center of each of the lakes, we selected one master core for age determination by ²¹⁰Pb and ¹³⁷Cs radioisotopes. The contents of OC, TN, TP, dry bulk density and mass specific magnetic susceptibility were then determined for all cores. The regional OCAR, TNAR and TPAR up-scaling from the multiple cores yielded mean values of 51.63 ± 15.13, 2.50 ± 0.98, and 0.90 ± 0.21 g m⁻² yr⁻¹, respectively. Nutrient AR in the studied lakes increased by a factor of approximately 2 × from the middle 19th century to the 1950s, and approximately 5 × after the 1950s. Elemental ratios show that the increase in OCAR is mainly the result of C autogenesis from the growth of aquatic plants stimulated by agricultural intensification, including increased chemical fertilizer application and farmland expansion. Significantly enhanced nutrient burial by these lakes after the 1950s resulted from increased anthropogenic impacts in northeast China. More sustainable agricultural practises, including a decrease in P fertilizer use, would result in a lowering of OCAR, TNAR and TPAR in the future.
اظهر المزيد [+] اقل [-]