خيارات البحث
النتائج 1 - 5 من 5
Ozone et canicule: Quels impacts sur les cultures et les écosystèmes ?
2004
Castell, Jean-François
absent
اظهر المزيد [+] اقل [-]Impacts potentiels de la pollution par l'ozone sur le rendement du blé en Ile-de-France: Analyse de la variabilité spatio-temporelle
2003
Castell, J.F. | Lebard, Stéphanie
Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation
1999
Boisson, J. | Ruttens, A. | Mench, Michel | Vangronsveld, J. | Unité d'agronomie ; Institut National de la Recherche Agronomique (INRA)
International audience
اظهر المزيد [+] اقل [-]High-resolution inventory of NO emissions from agricultural soils over the Ile-de-France region
2010
Rolland, Marie Noelle | Gabrielle, Benoit | Laville, Patricia | Cellier, Pierre | Beekmann, Matthias | Gilliot, Jean-Marc | Michelin, Joël | Hadjar, Dalila | Curci, G. | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS) | Dipartimento di Fisica - CETEMPS ; Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ)
Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates. Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km2 administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N–NO ha-1 yr-1 to 11.1 kg N–NO ha-1 yr-1. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates. The use of an agro-ecosystem model at regional scale makes it possible to map the emissions of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.
اظهر المزيد [+] اقل [-]Temperature and water pressure head effects on the degradation of the diketonitrile metabolite of isoxaflutole in a loamy soil under two tillage systems
2008
Alletto, Lionel | Benoit, Pierre | Bergheaud, Valerie | Coquet, Yves | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Ecole supérieure d'agriculture de Purpan (ESAP) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)
Laboratory studies were conducted to evaluate the effects of temperature and water pressure head on the degradation of the diketonitrile metabolite (DKN) of isoxaflutole during 84 d in samples collected in a loamy soil under conventional (CT) and conservation (MT) tillage systems. Soil temperature was the major factor controlling DKN degradation in the two tillage systems. The shortest half-lives (T1/2) were measured in the seedbed samples under MT at 25 °C and -33 cm water pressure head. We found that mouldboard ploughing under CT was responsible for the spatial variability of herbicide degradation properties, whereas under MT herbicide degradation was associated to the vertical distribution of organic matter. Tillage practices influence the spatial variability of diketonitrile degradation in soil and its sensitivity to pedoclimatic conditions.
اظهر المزيد [+] اقل [-]