خيارات البحث
النتائج 1 - 10 من 84
Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China النص الكامل
2020
Jia, Zhenyi | Wang, Junxiao | Zhou, Xiaodan | Su, San | Li, Yan | Li, Baojie | Zhou, Shenglu
Southwestern China contains the largest and most well-developed karst region in the world, and the potentially toxic elements (PTEs) content in the soils of the region is remarkably high. To explore the internal and external control factors and sources of soil PTEs enrichment in this area and to provide a basis for the treatment of PTE pollution, 113 soil samples were collected from Hengxian County, a karst region in Guangxi Province, southwestern China. The importance of eighteen influencing factors including parent material, weathering, physicochemical properties, topography and human activities were quantitatively analyzed by (partial) redundancy analysis. The sources of PTEs were identified using the Pb isotope ratio and absolute principal component score/multiple linear regression (APCS-MLR) model. The contents of all soil PTEs were higher than the corresponding background values of Guangxi soils. The contents in Cu, Zn, Cd, Hg and Pb were the highest in the soil from carbonate rock. The factor group of geological background and weathering explained 26.5% for the accumulation and distribution of soil PTEs and the influence of physicochemical properties was less than 2% but increased to 25.6% through interaction with weathering. Fe (47.1%), Al (42.1%), Mn (22%), chemical index of alteration (12.8%) and clay (11.9%) were the key factors affecting the soil PTEs, while the influence of human activities was weak. Pb isotope ratio and APCS-MLR classified 62.8–74% of soil PTEs as derived from natural sources, whereas 18.23% and 18.95% were derived from industrial activities and agricultural practice/traffic emissions, respectively. The Pb isotope ratio showed that the natural sources account for up to 90% of the Pb in the soil from carbonate rock, the highest contribution among the studied soils. The results of the study can provide background information on the soil PTEs contamination in the karst areas of China and other areas worldwide.
اظهر المزيد [+] اقل [-]Atmospheric pollution revealed by trace elements in recent snow from the central to the northern Tibetan Plateau النص الكامل
2020
Li, Yuefang | Huang, Ju | Li, Zhen | Zheng, Kui
In order to determine the current levels, spatial distribution patterns, and potential pollution of trace elements (TEs) in the atmosphere of the Tibetan Plateau (TP), snow pit samples were collected in May 2016 from five TP glaciers: Qiyi (QY), Hariqin (HRQ), Meikuang (MK), Yuzhufeng (YZF), and Xiaodongkemadi (XDKMD). Concentrations of 13 TEs (Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Pb, Sb, Sr, U, and Zn) in the snow were measured. The spatial distribution patterns and depth profiles of TEs from the studies sites revealed that the influence of dust on TEs was more significant on the MK and YZF glaciers than on the QY, HRQ, and XDKMD glaciers. The spatial distributions of TE EFFₑ values differed from their concentrations, however. The enrichment factor (EF) values and concentrations of some TEs in the YZF, QY, and XDKMD glaciers revealed that the pollution levels of these elements were significantly lower than those found in previous research. Examination based on EFs, principal component analysis, as well as the calculated non-dust contributions of TEs, revealed that dust was the principal source for most TEs in all five glaciers, while biomass burning was another potential natural source for TEs in some glaciers, such as QY. In contrast, Cd, Ba, Sr, Cu, Pb, Zn, and Sb were occasionally affected by anthropogenic sources such as road traffic emissions, fossil fuel combustion, and mining and smelting of nonferrous metals in and beyond the TP. Air mass backward trajectories revealed that potential pollutants were transported not only from local sources but also from Xinjiang Province in northwestern China, as well as South Asia, Central Asia, the Middle East, and Europe.
اظهر المزيد [+] اقل [-]Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves النص الكامل
2020
Yang, Tao-Yu | Qi, Yi-Ping | Huang, Hui-Yu | Wu, Fenglin | Huang, Wei-Tao | Deng, Chong-Ling | Yang, Lin-Tong | Chen, Li-Song
Low pH and aluminum (Al)-toxicity often coexist in acidic soils. Citrus sinensis seedlings were treated with nutrient solution at a pH of 2.5, 3.0, 3.5 or 4.0 and an Al concentration of 0 or 1 mM for 18 weeks. Thereafter, malate, citrate, isocitrate, acid-metabolizing enzymes, and nonstructural carbohydrates in roots and leaves, and release of malate and citrate from roots were measured. Al concentration in roots and leaves increased under Al-toxicity, but it declined with elevating nutrient solution pH. Al-toxicity increased the levels of glucose, fructose, sucrose and total soluble sugars in leaves and roots at each given pH except for a similar sucrose level at pH 2.5–3.0, but it reduced or did not alter the levels of starch and total nonstructural carbohydrates (TNC) in leaves and roots with the exception that Al improved TNC level in roots at pH 4.0. Levels of nonstructural carbohydrates in roots and leaves rose with reducing pH with a few exceptions with or without Al-toxicity. A potential model for the possible role of root organic acid (OA) metabolism (anions) in C. sinensis Al-tolerance was proposed. With Al-toxicity, the elevated pH upregulated the OA metabolism, and increased the flow of carbon to OA metabolism, and the accumulation of malate and citrate in roots and subsequent release of them, thus reducing root and leaf Al and hence eliminating Al-toxicity. Without Al-toxicity, low pH stimulated the exudation of malate and citrate, an adaptive response of Citrus to low pH. The interactive effects of pH and pH on OA metabolism were different between roots and leaves.
اظهر المزيد [+] اقل [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls.
اظهر المزيد [+] اقل [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) النص الكامل
2020
Moreno González, Raúl | Ruiz Cánovas, Carlos | Olías, Manuel | Macías, F. | Ministerio de Economía y Competitividad (España) | European Commission
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls. | This work was supported by the Spanish Ministry of Economic and Competitiveness through the projects CGL2016-78783-C2-1-R (SCYRE) and by H2020 European Institute of Innovation and Technology (EIT RawMaterials) through the projects Modular recovery process services for hydrometallurgy and water treatment (MORECOVERY). The authors thank to Prof. Yong Sik Ok (Associate Editor) and five different reviewers for their helpful comments that notably improved the quality of the manuscript. | Peer reviewed
اظهر المزيد [+] اقل [-]Modelling Hg mobility in podzols: Role of soil components and environmental implications النص الكامل
2020
Gómez-Armesto, Antía | Martínez Cortizas, Antonio | Ferro-Vázquez, Cruz | Méndez-López, Melissa | Arias-Estévez, Manuel | Nóvoa-Muñoz, Juan Carlos
A high-resolution soil sampling has been applied to two forest podzols (ACB-I and ACB-II) from SW Europe in order to investigate the soil components and processes influencing the content, accumulation and vertical distribution of Hg. Total Hg contents (THg) were 28.0 and 23.6 μg kg⁻¹ in A horizons of ACB-I and ACB-II, then they strongly decreased in the E horizons and peaked in the Bhs horizons of both soils (55.3 and 63.0 μg kg⁻¹). THg decreased again in BwC horizons to 17.0 and 39.8 μg kg⁻¹. The Bhs horizons accounted for 46 and 38% of the total Hg stored (ACB-I and ACB-II, respectively). Principal component analysis (PCA) and principal components regression (PCR), i.e. using the extracted components as predictors, allowed to distinguish the soil components that accounted for Hg accumulation in each horizon. The obtained model accurately predicted accumulated Hg (R² = 0.845) through four principal components (PCs). In A horizons, Hg distribution was controlled by fresh soil organic matter (PC4), whereas in E horizons the negative values of all PCs were consistent with the absence of components able to retain Hg and the corresponding very low THg concentrations. Maximum THg contents in Bhs horizons coincided with the highest peaks of reactive Fe and Al compounds (PC1 and PC2) and secondary crystalline minerals (PC3) in both soils. The THg distribution in the deepest horizons (Bw and BwC) seemed to be influenced by other pedogenetic processes than those operating in the upper part of the profile (A, E and Bhs horizons). Our findings confirm the importance of soils in the global Hg cycling, as they exhibit significant Hg pools in horizons below the uppermost O and A horizons, preventing its mobilization to other environmental compartments.
اظهر المزيد [+] اقل [-]Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) in tropical soils النص الكامل
2020
Oliver, Danielle P. | Li, Yasong | Orr, Ryan | Nelson, Paul | Barnes, Mary | McLaughlin, Michael (Michael J.) | Kookana, Rai S.
The sorption behaviour of three perfluoroalkyl substances (PFASs), namely perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonic acid (PFHxS), was determined on 28 tropical soils. Tropical soils are often highly weathered, richer in sesquioxides than temperate soils and may contain variable charge minerals. There are little data on sorption of PFASs in tropical soils. The highest Kd values were found for PFOS with mean values ranging from 0 to 31.6 L/kg. The Kd values for PFOA and PFHxS ranged from 0 to 4.9 L/kg and from 0 to 5.6 L/kg, respectively. While these values are in the range of literature sorption data, the average Kd values for PFOS and PFOA from the literature were 3.7 times and 3.6 times higher, respectively, than those measured in this study. Stepwise regression analysis did explain some of the variance, but with different explanatory variables for the different PFASs. The main soil properties explaining sorption for PFOS and PFOA were oxalate-extractable Al and pH, and for PFHxS was pH.
اظهر المزيد [+] اقل [-]INOS-mediated acute stomach injury and recovery in mice after oral exposure to halloysite nanotubes النص الكامل
2020
Hu, Tingting | Gui, Zongxiang | Gong, Jiachun | Rong, Rui | Wang, Xiaoqin | Tan, Weihang | Wang, Ziyi | Xu, Xiaolong
Natural halloysite nanotubes (HNTs) with a hollow lumen are already applied in numerous fields and enter the environment in increasing quantities, which may have effects on animal and human health. However their in vivo toxicity in mammals is still largely unclear. The aim of this study is to assess acute oral toxicity of HNTs in the stomach of mice and recovery. Oral HNTs at low dose (5 mg HNTs/kg BW) for 30 days increased in daily food and water intake and promoted mouse growth with no obvious adverse effect on the stomach. The promotive effect on mouse growth disappeared after cessation of oral administration of the nanotubes. Oral HNTs for 30 days at high dose (50 mg HNTs/kg BW) induced Si and Al accumulation in the stomach, which caused oxidative stress, inflammation and iNOS-mediated damage in the organ. The damage in the stomach led to slight atrophic gastritis and reduced mouse growth. Oral HNTs-induced changes at high dose were not observed after a 30-days recovery period. The findings provided the evidence that oral HNTs-induced acute toxicity in the stomach was reversible. More importantly, this research showed that Al and Si were cleared out of the mice by hepatic excretion and renal excretion, respectively, during the recovery period. The results suggest that HNTs at low concentration in environments have no adverse effect on mice, while there are health risks to mice under severe contamination by HNTs.
اظهر المزيد [+] اقل [-]Influence of microplastics on nutrients and metal concentrations in river sediments النص الكامل
2020
He, Beibei | Duodu, Godfred O. | Rintoul, Llew | Ayoko, G. A. (Godwin A.) | Goonetilleke, Ashantha
Microplastics pose threats to aquatic environments because they serve as hard-substrate for microbial community colonization and biofilm formation due to their long-life span and hydrophobic surface which can impact on aquatic ecosystems. However, the association between microplastics and other pollutants, particularly nutrients and metals in river sediments are largely unknown. In this study, microplastics abundance and hazard scores which are the risks arising from chemical compounds used for plastics manufacture, and the correlations between microplastics and the concentrations of total carbon (TC), total nitrogen (TN), total phosphorus (TP) and metals commonly present in the urban environment such as Al, As, Cr, Co, Cu, Fe, Mg, Mn, Ni, Cd, Se, Sr, Zn, Pb, in Brisbane River sediments were investigated. The study confirmed that the risk associated with microplastics is based on their monomer composition rather than the quantities present. Sediments having relatively higher abundance of microplastics with a relatively lower hazard score result in higher nutrient concentrations. The concentrations of metals in river sediments are more dependent on their original sources rather than the concentration of microplastics. Nevertheless, leachate from plastics should be considered in risk assessment in relation to the association between metals and plastics in aquatic environments.
اظهر المزيد [+] اقل [-]The mechanism for inhibiting acidification of variable charge soils by adhered Pseudomonas fluorescens النص الكامل
2020
Nkoh, Jackson Nkoh | Yan, Jing | Xu, Ren-Kou | Shi, Ren-yong | Hong, Zhi-neng
Acidification in variable charge soils is on the rise due to increased acid deposition and use of nitrogenous fertilizers. The associated low pH and cation exchange capacity make the soils prone to depleted base cations and increased levels of Al³⁺. Consequently, Al toxicity to plants and soil infertility decrease crop yield. This study was designed to investigate the effect of Pseudomonas fluorescens on the acidification of two Ultisols. The simulated acidification experiment demonstrated that the pH of bacteria-treated soil was higher than that of control under similar conditions, suggesting that the adhered bacteria inhibited soil acidification. This observation was attributed to the association of organic anions (RCOO⁻ or RO⁻) on bacteria with H⁺ to form neutral molecules (RCOOH or ROH) and reducing the activity of H⁺ in solution. The bacteria also inhibited the increase in soil soluble Al and exchangeable Al during soil acidification. The adhesion of bacteria on the soils increased soil effective cation exchange capacity (ECEC) and exchangeable base cations at each pH compared to control. The release of exchangeable base cations from bacteria-treated soil, and the decrease in soil ECEC and exchangeable base cations with decreasing pH confirmed that protonation of organic anions on adhered bacteria was mainly responsible for the inhibition of soil acidification. The change of zeta potential of the bacteria with pH and the ART-FTIR analysis at various pH provided more evidence for this mechanism. Therefore, the bacteria in variable charge soils played an important role in retarding soil acidification.
اظهر المزيد [+] اقل [-]Metal accumulation in dragonfly nymphs and crayfish as indicators of constructed wetland effectiveness النص الكامل
2020
Fletcher, Dean E. | Lindell, Angela H. | Stankus, Paul T. | Fletcher, Nathaniel D. | Lindell, Brooke E. | McArthur, J. Vaun
Constructed wetland effectiveness is often assessed by measuring reductions of contaminant concentrations in influent versus departing effluent, but this can be complicated by fluctuations in contaminant content/chemistry and hydrology. We assessed effectiveness of a constructed wetland at protecting downstream biota from accumulating elevated metal concentrations—particularly copper and zinc in effluents from a nuclear materials processing facility. Contaminants distributed throughout a constructed wetland system and two reference wetlands were assessed using six dragonfly nymph genera (Anax, Erythemis, Libellula, Pachydiplax, Tramea, and Plathemis) as biomonitors. Additionally, the crayfish, Cambarus latimanus, were analyzed from the receiving and two reference streams. Concentrations of Cu, Zn, Pb, Mn, Cr, Cd, and Al were evaluated in 597 dragonfly nymph and 149 crayfish whole-body composite samples. Dragonfly genera varied substantially in metal accumulation and the ability to identify elevated metal levels throughout components of the constructed wetland. Genera more closely associated with bottom sediments tended to accumulate higher levels of metals with Libellula, Pachydiplax, and Erythemis often accumulating highest concentrations and differing most among sites. This, combined with their abundance and broad distributions make the latter two species suitable candidates as biomonitors for constructed wetlands. As expected, dragonfly nymphs accumulated higher metal concentrations in the constructed wetland than reference sites. However, dragonfly nymphs often accumulated as high of metal concentrations downstream as upstream of the water treatment cells. Moreover, crayfish from the receiving stream near the constructed wetland accumulated substantially higher Cu concentrations than from downstream locations or reference streams. Despite reducing metal concentrations at base flow and maintaining regulatory compliance, metal fluxes from the wetland were sufficient to increase accumulation in downstream biota. Future work should evaluate the causes of downstream accumulation as the next step necessary to develop plans to improve the metal sequestering efficiency of the wetland under variable flow regimes.
اظهر المزيد [+] اقل [-]