خيارات البحث
النتائج 1 - 10 من 33
Microplastics across biomes in diadromous species. Insights from the critically endangered Anguilla anguilla
2022
Menéndez, Daniel | Álvarez, Almudena | Acle, Susana | Peón, Paloma | Ardura, Alba | García Vázquez, Eva
Microplastic pollution affects freshwater and marine biota worldwide, microplastics occurring even inside the organisms. With highly variable effects, from physical damage to toxicity of plastic compounds, microplastics are a potential threat to the biodiversity, community composition and organisms' health. This emerging pollutant could overstress diadromous species, which are exposed to both sea and river water in their life cycle. Here we have quantified microplastics in young European eel Anguilla anguilla, a critically endangered catadromous fish, entering three rivers in southwestern Bay of Biscay. River water, sediments and seawater were also analysed for microplastics. The microplastic type was identified using Fournier-Transform Infrared spectroscopy and then searched for their hazard potential at the European Chemical Agency site. Both riverine and sea microplastic pollution were predictors of eels’ microplastic profile (types of microplastics by shape and colour): A. anguilla juveniles entering European rivers already carry some marine microplastics and acquire more from river water. Potentially hazardous plastic materials were found from eels, some of them dangerous for aquatic life following the European Chemical Agency. This confirms microplastics as a potential threat for the species. Between-rivers differences for microplastics profiles persistent over years highlight the convenience of analysing and preventing microplastics at a local spatial scale, to save diadromous species from this stressor. Since the origin of microplastics present in glass eels seems to be dual (continental + seawater), new policies should be promoted to limit the entry of microplastics in sea and river waters.
اظهر المزيد [+] اقل [-]Prioritization based on risk assessment to study the bioconcentration and biotransformation of pharmaceuticals in glass eels (Anguilla anguilla) from the Adour estuary (Basque Country, France)
2022
Alvarez-Mora, Iker | Bolliet, Valérie | Lopez-Herguedas, Naroa | Castro, Lyen | Anakabe, Eneritz | Monperrus, Mathilde | Etxebarria, Nestor
The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone.
اظهر المزيد [+] اقل [-]Artificial light at night (ALAN) affects the downstream movement behaviour of the critically endangered European eel, Anguilla anguilla
2021
Vowles, Andrew S. | Kemp, Paul S.
Artificial light at night (ALAN) is considered one of the most pervasive forms of environmental pollution. It is an emerging threat to freshwater biodiversity and can influence ecologically important behaviours of fish. The European eel (Anguilla anguilla) is a critically endangered catadromous species that migrates downstream to the ocean to spawn in the Sargasso Sea. Given the pervasive nature of ALAN, many eel will navigate through artificially lit routes during their seaward migration, and although considered negatively phototactic, their response has yet to be quantified. We investigated the response of downstream moving European eel to simulated ALAN using a Light Emitting Diode unit in an experimental flume. We presented two routes of passage under: (1) a dark control (both channels unlit), (2) low ALAN (treatment channel lit to ca. 5 lx), or (3) high ALAN (treatment channel lit to ca. 20 lx). Eel were: (i) more likely to reject an illuminated route when exposed to high levels of ALAN; (ii) less likely to select the illuminated channel when given a choice; and (iii) passed downstream more rapidly when the illuminated route was selected. This study quantified the response of the critically endangered European eel to ALAN under an experimental setting, providing the foundations for future field based research to validate these findings, and offering insight on the ecological impacts of this major environmental pollutant and driver of global change.
اظهر المزيد [+] اقل [-]Head shape disparity impacts pollutant accumulation in European eel
2018
De Meyer, Jens | Belpaire, Claude | Boeckx, Pascal | Bervoets, Lieven | Covaci, Adrian | Malarvannan, Govindan | De Kegel, Barbara | Adriaens, Dominique
Several aspects of the life cycle of the critically endangered European eel (Anguilla anguilla) remain poorly understood. One such aspect is the broad-versus narrow-head dimorphism, and how this impacts their overall performance at different stages of their life cycle. At the yellow eel stage, the phenotypes show a trophic divergence. We investigated whether pollutant accumulation is affected by this disparity. We show that broad-headed eels contained higher concentrations of mercury and several lipophilic organic pollutants, compared to narrow-headed ones, irrespective of their fat content. The hereby confirmed link between the phenotypic disparity, its associated feeding ecology and its impact on pollutant accumulation thus raises further concerns about their migratory and reproductive success. Considering that pollution is an important contributor to the European eel's decline, our results demonstrate that broad-headed eels are more vulnerable to detrimental pollutant accumulation. This compromises their successful contribution to their population's reproduction and its restoration.
اظهر المزيد [+] اقل [-]Application of congener based multi-matrix profiling techniques to identify potential PCDD/F sources in environmental samples from the Burrishoole Catchment in the West of Ireland
2014
White, P. | McHugh, B. | Poole, R. | McGovern, E. | White, J. | Behan, P. | Foley, B. | Covaci, A.
Homologue and congener profiles of PCDD/Fs in eels, passive sampler and sediment extracts from the Burrishoole, a rural upland catchment on the western Irish seaboard were compared with potential PCDD sources. ΣPCDD/F levels in eels ranged from 2.9 to 25.9 pg g−1 wet weight, which are elevated compared to other Irish locations. The OCDD congener dominated the pattern of ΣPCDD/Fs in all matrices from Burrishoole. Passive samplers were successfully deployed to identify for the first time the presence in the water column of PCDD/Fs and dimethoxylated octachlorodiphenyl ether (diMeOoctaCDE), impurities found in pentachlorophenol (PCP) production. Principal component analysis (PCA) identified similarities between PCDD/F profiles in technical PCP mixtures and environmental samples from the Burrishoole region. Results strongly suggest residual PCDD contamination associated with historic local use of a dioxin contaminated product in the catchment area, with pentachlorophenol a strong candidate.
اظهر المزيد [+] اقل [-]Persistent organic pollutants (PCB, DDT, HCH, HCB & BDE) in eels (Anguilla anguilla) in Scotland: Current levels and temporal trends
2010
Macgregor, Kenneth | Oliver, Ian W. | Harris, Lynsay | Ridgway, Ian M.
Eels are an ideal biomonitor for persistent organic pollutants (POPs) because of their high lipid content, longevity and tendency to remain within a defined range during their freshwater life phase. This study investigated concentrations of POPs in eels (Anguilla anguilla) from 30 sites across Scotland, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (BDEs), DDT (and metabolites), hexachlorocyclohexanes (α, β, γ-HCH), hexachlorobenzene (HCB), hexachlorobutadiene (HCBD) and pentachlorobenzene. Despite its EU-wide ban ∼30 years ago, DDT and its derivatives were detected in almost all samples. PCB 153 and 138 were the most widely detected PCB congeners, while BDE 47 was the dominant BDE. Pentachlorobenzene was not detected, while HCBD was detected once only. α-HCH, β-HCH and HCB concentrations were very low (generally <3 μg/kg or below detection). When compared with 1986 and 1995 data, the results revealed considerable decreases in p,p′-DDE concentrations. More drastic reductions were evident for γ-HCH, reflecting the tightening restrictions on pesticide use imposed over the previous decades.
اظهر المزيد [+] اقل [-]Impact of environmental micropollutants and diet composition on the gut microbiota of wild european eels (Anguilla anguilla)
2022
Bertucci, Anthony | Hoede, Claire | Dassié, Emilie | Gourves, Pierre-Yves | Suin, Amandine | Le Menach, Karine | Budzinski, Hélène | Daverat, Françoise
In fish, the gut microbiome plays a crucial role in homeostasis and health and is affected by several organic and inorganic environmental contaminants. Amphidromous fish are sentinel species, particularly exposed to these stressors. We used whole metagenome sequencing to characterize the gut microbiome of wild European eels (Anguilla anguilla) at a juvenile stage captured from three sites with contrasted pollution levels in term of heavy metals and persistent organic pollutants. The objectives were to identify what parameters could alter the gut microbiome of this catadromous fish and to explore the potential use of microbiota as bioindicators of environment quality. We identified a total of 1079 microbial genera. Overall, gut microbiome was dominated by Proteobacteria, Firmicutes and Actinobacteria. Alpha and beta diversity were different amongst sites and could be explained by a reduced number of environmental and biological factors, specifically the relative abundance of fish preys in eels’ diet, PCB101, γHCH (lindane), transnonachlor and arsenic. Furthermore, we identified a series of indicator taxa with differential abundance between the three sites. Changes in the microbial communities in the gut caused by environmental pollutants were previously undocumented in European eels. Our results indicate that microbiota might represent another route by which pollutants affect the health of these aquatic sentinel organisms.
اظهر المزيد [+] اقل [-]Are persistent organic pollutants and metals in eel muscle predictive for the ecological water quality?
2014
Van Ael, Evy | Belpaire, Claude | Breine, Jan | Geeraerts, Caroline | Van Thuyne, Gerlinde | Eulaers, Igor | Blust, Ronny | Bervoets, Lieven
Relationships between the presence of PCBs, OCPs and metals in aquatic ecosystems and the ecological water quality were investigated by combining datasets of long-term monitoring of chemicals in European eel (Anguilla anguilla, N = 1156) in Flanders (Belgium) and the Ecological Quality Ratio (EQR), based on the assessment of fish assemblages at 185 locations. For most pollutants, EQR scores were lower when pollutant levels were higher. Threshold concentrations for a good quality could be formulated for PCB's, most metals and OCPs. Mixed models suggested that the ecological water quality was significantly correlated with the presence of PCBs. However, the low R2 indicates that other environmental pressures may significantly influence the biotic integrity of fish communities. Empirical data and their analyses are essential to enable defining threshold values of bioaccumulated levels to allow better protection of the aquatic environment and its biota through associated food webs as demanded by the Water Framework Directive.
اظهر المزيد [+] اقل [-]First record of microplastic occurence at the commercial fish from Orontes River
2022
Kiliç, Ece | Yücel, Nebil | Mübarek Şahutoğlu, Seycan
Freshwater environments are more sensitive to anthropogenic influences and usually contain higher concentrations of pollutants than marine environments. Microplastic pollution causes additional stress on freshwater animals; yet, studies evaluating the microplastic occurrence in freshwater biota are still limited. In this study, microplastic occurrence in the gastrointestinal tracts (GIT) and gill of commercial fish species (Prussian carp Carassius gibelio (Bloch, 1782); Abu mullet Planiliza abu (Heckel, 1843); Common carp Cyprinus carpio Linnaeus, 1758; European ell Anguilla Anguilla (Linnaeus, 1758); North African catfish Clarias gariepinus (Burchell, 1822); Goldfish Carassius auratus (Linnaeus, 1758) were reported from Orontes River. MPs abundance in the GIT and gill of six species were found as 5.1 ± 2 MPs fish⁻¹ and 4.4 ± 2 MPs fish⁻¹ with an occurrence of 95% and 74%, respectively. The majority of extracted microplastics were fiber, black and less than 1000 μm in size. FTIR analysis determined the main polymer types as polyester (50%), high-density polyethylene (HDPE) (10%), polypropylene (PP) (8%) and polyethylene terephthalate (PET) (5%). High MPs abundance and frequency of occurence indicate the exposure of microplastic pollution in freshwater biota which could threat the health of both individuals and consumers. Results obtained in this study will increase the acknowledgement of MPs pollution in the Orontes River. Also, this study will provide data to the administrators to set up necessary legislations in freshwater ecosystems.
اظهر المزيد [+] اقل [-]Identification and expression of microRNAs in european eels Anguilla anguilla from two natural sites with different pollution levels
2019
Bertucci, Anthony | Pierron, Fabien | Ye, Tao | Gonzalez, Patrice | Couture, Patrice | Baudrimont, Magalie
MicroRNAs (miRNAs) are a class of small non-coding RNA that control multiple biological processes through negative post-transcriptional regulation of gene expression. Recently a role of miRNAs in the response of aquatic organisms to environmental toxicants emerged. Toxicant-induced changes in miRNA expression might then represent novel biomarkers to evaluate the health status of these organisms. In this study, we aimed to identify the miRNA repertoire in the liver of the European eel Anguilla anguilla and to compare their differential expression between a polluted site located in the Gironde Estuary and a pristine site in Arcachon Bay (France).A total of 299 mature miRNAs were identified. In polluted water, 19 miRNAs were up-regulated and 22 were down-regulated. We predicted that these differentially expressed miRNAs could target 490 genes that were involved in ribosome biogenesis, response to hormones, response to chemical and chromatin modification. Moreover, we observed only few examples (29) of negative correlation between the expression levels of miRNAs and their targets suggesting that, in the system studied, miRNAs might not only regulate gene expression directly by degrading mRNA but also by inhibiting protein translation or by regulating other epigenetic processes.This study is the first example of in situ investigation of the role of miRNAs in the response of a fish species to water quality. Our findings provide new insights into the involvement of epigenetic mechanisms in the response of animals chronically exposed to pollution and pave the way for the utilization of miRNAs in aquatic ecotoxicology.
اظهر المزيد [+] اقل [-]