خيارات البحث
النتائج 1 - 10 من 37
Use of nondestructive biomarkers and residue analysis to assess the health status of endangered species of pinnipeds in the south-west Atlantic.
1997
Fossi M.C. | Marsili L. | Junin M. | Castello H. | Lorenzani J.A. | Casini S. | Savelli C. | Leonzio C.
Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio)
2021
Tang, Jiali | Wang, Wenqian | Jiang, Yuanhe | Chu, Weihua
Diazinon is a common organophosphate pesticide widely used to control parasitic infections in agriculture. Excessive use of diazinon can have adverse effects on the environment and aquatic animal health. In the present study, the toxic effects of diazinon on the histology, antioxidant, innate immune and intestinal microbiota community composition of crucian carp (Carassius auratus gibelio) were investigated. The results showed that diazinon at the tested concentration (300 μg/L) induced gill and liver histopathological damages. Hepatic total superoxide dismutase (T-SOD), catalase (CAT), and glutathione S-transferase (GST) activities significantly decreased (P < 0.05) by 32.47%, 65.33% and 37.34%, respectively. However, the liver tissue malondialdehyde (MDA) content significantly (P < 0.05) increased by 138.83%. The 300 μg/L diazinon significantly (P < 0.05) downregulated the gene expression of TLR4, MyD88, NF-kB p100 and IL-8 but had no significant effect TNF-α (P = 0.8239). In addition, the results demonstrated that diazinon exposure could affect the intestinal microbiota composition and diversity. Taken together, the results of this study indicated that diazinon exposure can cause damage to crucian carp, induce histopathological damage in gill and liver tissues, oxidative stress in the liver, and innate immune disorders and alter intestinal microbiota composition and diversity.
اظهر المزيد [+] اقل [-]PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis
2020
Dai, Pengyuan | Shen, Dan | Tang, Qian | Huang, Kai | Li, Chunmei
Particulate matter (PM) released from the processes of livestock production has a negative impact on the health of animals and workers. Herein, the concentration, major chemical components, morphology and microbiological compositions of particulate matter 2.5 (PM2.5, particles with aerodynamic diameter less than 2.5 μm) in a broiler breeding house were investigated. The results showed that the PM2.5 distribution in the chicken house was affected by the illumination, draught fans, chicken frame structure and activity of the chickens in the broiler breeding house. Component analysis showed that organic carbon (OC) accounted for the largest proportion, and followed by element carbon (EC), SO42−, NO3−, NH4+, Na+, K+ and Ca2+. Ultrastructural observations revealed that the shape of PM2.5 had a round, rectangular, chain-like and irregular shape. The concentration of endotoxin was approximately 0.3 EU/m3. Microbiological analysis showed that at the genus level, the pathogenic bacteria included Staphylococcus, Corynebacterium, Enterococcus, Parabacteroides, Escherichia and Megamonas. The abundant harmful fungi were Aspergillus, Scopulariopsis, Wallemia, and Fusarium. Through redundancy analysis (RDA) analysis, we determined that OC, EC, Na+, K+, and NH4+ had strong correlations with Brachybacterium, Brevibacterium, Corynebacterium, Escherichia, Scopulariopsis and Microascus. SO42− was closely related to Scopulariopsis and Salinicoccus. Salinicoccus was also strongly correlated with NO3−. Our results indicated that feed, faeces, and outside soot are contributed to the increase in PM2.5 concentration in the chicken house, while the sources of the dominant bacterial and fungi might be feed, faeces, suspended outside soil and cereal crops.
اظهر المزيد [+] اقل [-]Dibutyl phthalate contamination accelerates the uptake and metabolism of sugars by microbes in black soil
2020
Chen, Wenjing | Wang, Zhigang | Xu, Weihui | Tian, Renmao | Zeng, Jin
Dibutyl phthalate (DBP) is widely used as plasticizer and has been detected in the environment, posing a threat to animal health. However, the effects of DBP on agricultural microbiomes are not known. In this study, DBP levels in black soil were evaluated, and the impact of DBP contamination on the uptake and metabolism of sugars in microbes was assessed by glucose absorption tests, metaproteomics, metabolomics, enzyme activity assays and computational simulation analysis. The results indicated that DBP contamination accelerated glucose consumption and upregulated the expression of porins and periplasmic monosaccharide ATP-binding cassette (ABC) transporter solute-binding proteins (SBPs). DBP and its metabolic intermediates (carboxymuconate and butanol) may form a stable complex with sugar transporters and enhance the rigidity and stability of these proteins. Sugar metabolism resulting in the generation of ATP and reducing agent (NADPH), as well as the expression of some key enzymes (dehydrogenases) were also upregulated by DBP treatment. Moreover, a diverse bacterial community appears to utilize sugar, suggesting that there are widespread effects of DBP contamination on soil microbial ecosystems. The results of this study provide a theoretical basis for investigating the toxicological effects of DBP on microbes in black soil.
اظهر المزيد [+] اقل [-]Fumonisins B1 exposure triggers intestinal tract injury via activating nuclear xenobiotic receptors and attracting inflammation response
2020
Li, Xinran | Cao, Changyu | Zhu, Xingyi | Li, Xiaowen | Wang, Kai
Fumonisins (FBs) are mycotoxins that are widely distributed in crops and feed, and ingestion of FBs -contaminated crops is harmful to animal health. Furthermore, it is unknown if Fumonisins B1 (FB1) can cause intestinal toxicity. To investigate FB1-induced intestinal toxicity, mice were treated with 0 or 5 mg/kg FB1 by gavage administration for 42 days. Histopathology indicated that FB1 exposure caused proliferation of intestinal epithelial cells, intestinal villi and epithelial layer shedding, intestinal gland atrophy, and necrosis. Notably, FB1 interfered with nuclear xenobiotic receptors (NXR) homeostasis by regulating the level of aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and downstream target genes (CYP450s). Moreover, abnormal expression of inflammatory cytokines (IL-1β, IL-2, IL-4, IL-10, and TNF-α) indicated the occurrence of inflammation. The present study provides new insights regarding the mechanism of FB1-induced intestinal toxicity through activating the NXR system and by triggering inflammatory responses in the intestinal tract in mice.
اظهر المزيد [+] اقل [-]Availability of specific prey types impact pied flycatcher (Ficedula hypoleuca) nestling health in a moderately lead contaminated environment in northern Sweden
2020
Lidman, Johan | Jonsson, Micael | Berglund, Åsa M.M.
Anthropogenic metal contamination can cause increased stress in exposed organisms, but it can be difficult to disentangle the anthropogenic influence from natural variation in environmental conditions. In the proximity of a closed lead (Pb)/zinc (Zn) mine in northern Sweden, the health effects of Pb exposure, essential element (calcium [Ca] and Zn) uptake, and prey availability and composition were estimated on pied flycatcher (Ficedula hypoleuca) nestlings, using hemoglobin (Hb) level as a proxy for health. Pb concentration in nestling blood range between 0.00034 and 2.21 μg/g (ww) and nestlings close to the mine had higher Pb concentrations and lower Hb, but contrary to our hypothesis, Hb was not directly related to Pb accumulation. Proportions of flying terrestrial and aquatic insects in available prey and availability of flying terrestrial insects were positively associated with nestling Hb, whereas the proportion of terrestrial ground living prey, the most common prey type, showed a negative association. This suggests that positive influence of certain prey, which does not have to be the most common in the surroundings, can counteract the negative effects from Pb contamination on bird health. Nestlings inhabiting sites adjacent to lakes had an advantage in terms of prey composition and availability of preferred prey, which resulted in higher Hb. As such, our results show that during moderate exposure to metals, variation in natural conditions, such as prey availability, can have great impact on organism health compared to Pb exposure.
اظهر المزيد [+] اقل [-]Distribution and physicochemical properties of particulate matter in swine confinement barns
2019
Shen, Dan | Wu, Sheng | Li, Zhaojian | Tang, Qian | Dai, Pengyuan | Li, Yansen | Li, Chunmei
Air pollutants accumulated in confined livestock barns could impact the health of animals and staff. Particulate matter (PM) and ammonia (NH3) concentrations are typically high in enclosed livestock houses with weak ventilation. The objective of this study was to investigate the distribution of PM in different size fractions and the levels of NH3 in a high-rise nursery (HN) barn and a high-rise fattening (HF) barn on a swine farm and to analyse the physicochemical properties of fine PM (PM2.5, PM with aerodynamic diameter ≤ 2.5 μm). The concentrations of total suspended particles (TSP, PM with aerodynamic diameter ≤ 100 μm), inhalable PM (PM10, PM with aerodynamic diameter ≤ 10 μm), PM2.5 and NH3 were monitored continuously for 6 d in each barn. The results showed that the concentrations of PM and NH3 varied with position, they were significantly higher inside the barns than outside (P < 0.01) and significantly higher in the forepart than at the rear of the two barns (P < 0.05). In the HF barn, the values of the two parameters were 0.777 ± 0.2 mg m−3 and 26.7 ± 7 mg m−3, respectively, significantly higher than the values observed in the HN barn at all monitored sites (P < 0.05). The PM concentrations increased markedly during feeding time in the two barns. Chemical characteristics analysis revealed that the main sources of PM2.5 in the two barns may have consisted of blowing dust, feed, mineral particles and smoke. In conclusion, the air quality at the forepart was worse than that at the rear of the barns. Activities such as feeding could increase the PM concentrations. The components of PM2.5 in the two barns were probably blowing dust, feed, mineral particles and smoke from outside.
اظهر المزيد [+] اقل [-]A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments
2019
Wang, Xuandong | Yin, Renli | Zeng, Lixi | Zhu, Mingshan
Antibiotics as emerging pharmaceutical pollutants have seriously not only threatened human life and animal health security, but also caused environmental pollution. It has drawn enormous attention and research interests in the study of antibiotics removal from aqueous environments. Graphene, an interesting one-atom-thick, 2D single-layer carbon sheet with sp² hybridized carbon atoms, has become an important agent for removal of antibiotic, owing to its unique physiochemical properties. Recently, a variety of graphene-based nanomaterials (GNMs) are reported to efficiently remove antibiotics from aqueous solutions by different technologies. In this review, we summarize different structure and properties of GNMs for the removal of antibiotics by adsorption. Meanwhile, advanced oxidation processes (AOPs), such as photocatalysis, Fenton process, ozonation, sulfate radical and combined AOPs by the aid of GNMs are summarized. Finally, the opportunities and challenges on the future scope of GNMs for removal of antibiotics from aqueous environments are proposed.
اظهر المزيد [+] اقل [-]Temporal dynamics of SO2 and NOX pollution and contributions of driving forces in urban areas in China
2018
Zhao, Shuang | Liu, Shiliang | Hou, Xiaoyun | Cheng, Fangyan | Wu, Xue | Dong, Shikui | Beazley, Robert
SO₂ and NOX pollution have significantly reduced the air quality in China in past decades. Haze and acid rain have negatively affected the health of animals, plants, and human beings. Documented studies have shown that air pollution is influenced by multiple socioeconomic driving forces. However, the relative contributions of these driving forces are not well understood. In this study, using the structural equation model (SEM), we quantified the contributing effects of various forces driving air pollution in 2015 in prefecture-level cities of China. Our results showed that there has been significant control of SO₂ pollution in the past 20 years. The annual average SO₂ concentration has dropped from 83 μg/m³ in 1996 to 21 μg/m³ in 2015, while the annual average NOX concentration has increased from 47 μg/m³ in 1996 to 58 μg/m³ in 2015. We evaluated data on the annual average concentrations of SO₂, which in some cities may mask the differences of SO₂ concentrations between different months. Hence, SO₂ pollution should continue to be controlled in accordance with existing policies and regulations. However, we suggest that NOX should become the new focus of air pollution prevention and treatment. The SEM results showed that industrial scale, city size, and residents’ activities have a significant impact on NOX pollution. Among these, industrial scale had the highest contribution. The findings from our study can provide a theoretical basis for the formulation of NOX pollution control policy in China.
اظهر المزيد [+] اقل [-]Inheritance, stability, cross-resistance, and life history parameters of a clothianidin-selected strain of house fly, Musca domestica Linnaeus
2021
Shah, Rizwan Mustafa | Shad, Sarfraz Ali
The house fly, Musca domestica L., is a cosmopolitan insect pest of public and animal health importance that serves as a mechanical vector of pathogens. Aimed at prospective resistance management to reduce environmental pollution, we characterized the inheritance pattern, realized heritability, fitness cost, cross resistance, stability and mechanism of clothianidin resistance in M. domestica that were collected from the poultry farm. By continuous selection with clothianidin for 11 generations, the clothianidin selected M. domestica strain (Clotha-SEL) developed a 3827-fold resistance compared to a susceptible strain. However, resistance to clothianidin was proved to be unstable when selection with clothianidin was removed for five generations (G₇ to G₁₂). Inheritance pattern analysis at G₈ of Clotha-SEL (RR = 897) revealed that resistance to clothianidin was polygenic, autosomal and incompletely dominant. Realized heritability (h²) for resistance value was 0.38 (at G₁₁) in the tested strain. Synergist bioassays showed that microsomal oxidases and esterases might not contribute significantly in resistance evolution. Fitness costs of clothianidin resistance were present, for example, reduction in growth potential of the Clotha-SEL strain in comparison to the untreated counterpart strain (UNSEL) was observed. No cross resistance to bifenthrin and fipronil and a very low cross-resistance to spinosad were observed. These insecticides could be alternated with clothianidin as an insecticide resistance management tool to sustain its efficacy for a longer time period. These results shall be utilized to devise a proactive resistance management strategy for use of clothianidin against M. domestica that will be helpful to alleviate the allied threats to environmental and human health.
اظهر المزيد [+] اقل [-]