خيارات البحث
النتائج 1 - 10 من 126
Impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system النص الكامل
2020
Chang, Jang Sen | Chong, Meng Nan | Poh, Phaik Eong | Ocon, Joey D. | Md Zoqratt, Muhammad Zarul Hanifah | Lee, Sze Mei
This study aimed to evaluate the impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system. Results showed that the antibacterial properties of ZnO nanoarchitectures were significantly more overwhelming than their photocatalytic properties. The inhibition of microbial activities in activated sludge by ZnO nanoarchitectures entailed an adverse effect on wastewater treatment efficiency. Subsequently, the 16S sequencing analysis were conducted to examine the impacts of ZnO nanoarchitectures on aerobic microbial communities, and found the significantly lower microbial diversity and species richness in activated sludge treated with 1D-ZnO nanorods as compared to other ZnO nanoarchitectures. Additionally, 1D-ZnO nanorods reduced the highest proportion of Proteobacteria phylum in activated sludge due to its higher proportion of active polar surfaces that facilitates Zn²⁺ ions dissolution. Pearson correlation coefficients showed that the experimental data obtained from COD removal efficiency and bacterial log reduction were statistically significant (p-value < 0.05), and presented a positive correlation with the concentration of Zn²⁺ ions. Finally, a non-parametric analysis of Friedman test and post-hoc analysis confirmed that the concentration of Zn²⁺ ions being released from ZnO nanoarchitectures is the main contributing factor for both the reduction in COD removal efficiency and bacterial log reduction.
اظهر المزيد [+] اقل [-]Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio) النص الكامل
2018
Kim, Jin | Oh, Hanseul | Ryu, Bokyeong | Kim, Ukjin | Lee, Ji-min | Jung, Cho-Rok | Kim, C-yoon | Park, Jae-Hak
Triclosan (TCS) is an organic compound with a wide range of antibiotic activity and has been widely used in items ranging from hygiene products to cosmetics; however, recent studies suggest that it has several adverse effects. In particular, TCS can be passed to both fetus and infants, and while some evidence suggests in vitro neurotoxicity, there are currently few studies concerning the mechanisms of TCS-induced developmental neurotoxicity. Therefore, this study aimed to clarify the effect of TCS on neural development using zebrafish models, by analyzing the morphological changes, the alterations observed in fluorescence using HuC-GFP and Olig2-dsRED transgenic zebrafish models, and neurodevelopmental gene expression. TCS exposure decreased the body length, head size, and eye size in a concentration-dependent manner in zebrafish embryos. It increased apoptosis in the central nervous system (CNS) and particularly affected the structure of the CNS, resulting in decreased synaptic density and shortened axon length. In addition, it significantly up-regulated the expression of genes related to axon extension and synapse formation such as α1-Tubulin and Gap43, while decreasing Gfap and Mbp related to axon guidance, myelination and maintenance. Collectively, these changes indicate that exposure to TCS during neurodevelopment, especially during axonogenesis, is toxic. This is the first study to demonstrate the toxicity of TCS during neurogenesis, and suggests a possible mechanism underlying the neurotoxic effects of TCS in developing vertebrates.
اظهر المزيد [+] اقل [-]Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions النص الكامل
2018
Huang, Jing | Huang, Guohe | An, Chunjiang | He, Yuan | Yao, Yao | Zhang, Peng | Shen, Jian
Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions.
اظهر المزيد [+] اقل [-]Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide النص الكامل
2011
Chen, Wan-Ru | Huang, Ching-Hua
Tetracycline antibiotics including tetracycline (TTC), oxytetracycline (OTC) and chlorotetracycline (CTC) undergo rapid transformation to yield various products in the presence of MnO₂ at mild conditions (pH 4–9 and 22 °C). Reaction rates follow the trend of CTC > TTC > OTC, and are affected by pH and complexation of TCs with Mg²⁺ or Ca²⁺. Experimental results of TTC indicate that MnO₂ promotes isomerization at the C ring to form iso-TTC and oxidizes the phenolic-diketone and tricarbonylamide groups, leading to insertion of up to 2 O most likely at the C9 and C2 positions. In contrast, reactions of OTC with MnO₂ generate little iso-OTC, but occur mainly at the A ring’s dimethylamine group to yield N-demethylated products. CTC yields the most complicated products upon reactions with MnO₂, encompassing transformation patterns observed with both TTC and OTC. The identified product structures suggest lower antibacterial activity than that of the parent tetracyclines.
اظهر المزيد [+] اقل [-]Visible-light reduced silver nanoparticles’ toxicity in Allium cepa test system النص الكامل
2020
Souza, Irisdoris R. | Silva, Lucas R. | Fernandes, Letícia S.P. | Salgado, Lilian D. | Silva de Assis, Helena C. | Firak, Daniele S. | Bach, Larissa | Santos-Filho, Ronaldo | Voigt, Carmen L. | Barros, Ariana C. | Peralta-Zamora, Patricio | Mattoso, Ney | Franco, Celia Regina C. | Soares Medeiros, Lia C. | Marcon, Bruna H. | Cestari, Marta M. | Sant’Anna-Santos, Bruno F. | Leme, Daniela M.
Silver nanoparticles (AgNPs) are widely used in consumer products due to their antibacterial property; however, their potential toxicity and release into the environment raises concern. Based on the limited understanding of AgNPs aggregation behavior, this study aimed to investigate the toxicity of uncoated (uc-AgNP) and coated with polyvinylpyrrolidone (PVP-AgNP), at low concentrations (0.5–100 ng/mL), under dark and visible-light exposure, using a plant test system. We exposed Allium cepa seeds to both types of AgNPs for 4–5 days to evaluate several toxicity endpoints. AgNPs did not cause acute toxicity (i.e., inhibition of seed germination and root development), but caused genotoxicity and biochemical alterations in oxidative stress parameters (lipid peroxidation) and activities of antioxidant enzymes (superoxide dismutase and catalase) in light and dark conditions. However, the light exposure decreased the rate of chromosomal aberration and micronuclei up to 5.60x in uc-AgNP and 2.01x in PVP-AgNP, and 2.69x in uc-AgNP and 3.70x in PVP-AgNP, respectively. Thus, light exposure reduced the overall genotoxicity of these AgNPs. In addition, mitotic index alterations and morphoanatomical changes in meristematic cells were observed only in the dark condition at the highest concentrations, demonstrating that light also reduces AgNPs cytotoxicity. The light-dependent aggregation of AgNPs may have reduced toxicity by reducing the uptake of these NPs by the cells. Our findings demonstrate that AgNPs can be genotoxic, cytotoxic and induce morphoanatomical and biochemical changes in A. cepa roots even at low concentrations, and that visible-light alters their aggregation state, and decreases their toxicity. We suggest that visible light can be an alternative treatment to remediate AgNP residues, minimizing their toxicity and environmental risks.
اظهر المزيد [+] اقل [-]Uptake and metabolism of clarithromycin and sulfadiazine in lettuce النص الكامل
2019
Tian, Run | Zhang, Rong | Uddin, Misbah | Qiao, Xianliang | Chen, Jingwen | Gu, Gege
Antibiotics are introduced into agricultural fields by the application of manure or biosolids, or via irrigation using reclaimed wastewater. Antibiotics can enter the terrestrial food chains through plant uptake, which forms an alternative pathway for human exposure to antibiotics. However, previous studies mainly focused on detecting residues of the parent antibiotics, while ignoring the identification of antibiotics transformation products in plants. Here, we evaluated the uptake and metabolism of clarithromycin (CLA) and sulfadiazine (SDZ) in lettuce under controlled hydroponic conditions. The antibiotics and their metabolites were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS/MS) and ultra-performance liquid chromatograph Micromass triple quadrupole mass spectrometry (UPLC−QqQ−MS/MS). The structure of CLA, SDZ and N-acetylated SDZ were confirmed with synthesized standards, verifying the reliability of the identification method. Eight metabolites of CLA and two metabolites of SDZ were detected in both the leaves and roots of lettuce. The metabolites of CLA included phases I and II transformation products, while only phase II metabolites of SDZ were observed in lettuce. The proportion of CLA metabolites was estimated to be greater than 70%, indicating that most of the CLA was metabolized in plant tissues. The proportion of SDZ metabolites was lower than 12% in the leaves and 10% in the roots. Some metabolites might have the ability to increase or acquire antibacterial activity. Therefore, in addition to the parent compounds, metabolites of antibiotics in edible vegetables are also worthy of study for risk assessment and to determine the consequences of long-term exposure.
اظهر المزيد [+] اقل [-]Antibacterial activity of oxytetracycline photoproducts in marine aquaculture's water النص الكامل
2017
Leal, J.F. | Henriques, I.S. | Correia, A. | Santos, E.B.H. | Esteves, V.I.
Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. The main concern related to its use is the bacterial resistance, when ineffective treatments are applied for its removal or inactivation. OTC photo-degradation has been suggested as an efficient complementary process to conventional methods used in intensive fish production (e.g.: ozonation). Despite this, and knowing that the complete mineralization of OTC is difficult, few studies have examined the antibacterial activity of OTC photoproducts. Thus, the main aim of this work is to assess whether the OTC photoproducts retain the antibacterial activity of its parent compound (OTC) after its irradiation, using simulated sunlight. For that, three Gram-negative bacteria (Escherichia coli, Vibrio sp. and Aeromonas sp.) and different synthetic and natural aqueous matrices (phosphate buffered solutions at different salinities, 0 and 21‰, and three different samples from marine aquaculture industries) were tested. The microbiological assays were made using the well-diffusion method before and after OTC has been exposed to sunlight. The results revealed a clear effect of simulated sunlight, resulting on the decrease or elimination of the antibacterial activity for all strains and in all aqueous matrices due to OTC photo-degradation. For E. coli, it was also observed that the antibacterial activity of OTC is lower in the presence of sea-salts, as demonstrated by comparison of halos in aqueous matrices containing or not sea-salts.
اظهر المزيد [+] اقل [-]Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation النص الكامل
2017
Shang, Enxiang | Niu, Junfeng | Li, Yang | Zhou, Yijing | Crittenden, John Charles
In this study, the phototoxicity of cadmium sulfide (CdS), molybdenum disulfide (MoS2), and tungsten disulfide (WS2) nanoparticles (NPs) toward Escherichia coli (E. coli) under UV irradiation (365 nm) was investigated. At the same mass concentration of NPs, the toxicity of three NPs decreased in the order of CdS > MoS2 > WS2. For example, the death rates of E. coli exposed to 50 mg/L CdS, MoS2, and WS2 were 96.7%, 38.5%, and 31.2%, respectively. Transmission electron microscope and laser scanning confocal microscope images of E. coli exposed to three NPs showed the damage of cell walls and release of intracellular components. The CdS-treated cell wall was more extensively damaged than those of MoS2-treated and WS2-treated bacteria. WS2 and MoS2 generated superoxide radical (O2⁻), singlet oxygen (¹O2), and hydroxyl radical under UV irradiation, CdS produced only O2⁻ and ¹O2. CdS and WS2 released ions under UV irradiation, while MoS2 did not. Reactive oxygen species (ROS) generation and toxic ion release jointly resulted in the antibacterial activities of CdS and WS2. ROS generation was the dominant toxic mechanism of MoS2 toward the bacteria. This study highlighted the importance of considering the hazardous effect of sulfide NPs after their release into natural waters under light irradiation condition.
اظهر المزيد [+] اقل [-]Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death النص الكامل
2016
Liu, Gesheng | Zhang, Shuai | Yang, Kun | Zhu, Lizhong | Lin, Daohui
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L−1, respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs.
اظهر المزيد [+] اقل [-]In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water النص الكامل
2009
Kusari, Souvik | Prabhakaran, Deivasigamani | Lamshoft, Marc | Spiteller, M (Michael)
Fluoroquinolones like difloxacin (DIF) and sarafloxacin (SARA) are adsorbed in soil and enter the aquatic environment wherein they are subjected to photolytic degradation. To evaluate the fate of DIF and SARA, their photolysis was performed in water under stimulated natural sunlight conditions. DIF primarily degrades to SARA. On prolonged photodegradation, seven photoproducts were elucidated by HR-LC-MS/MS, three of which were entirely novel. The residual anti-bacterial activities of DIF, SARA and their photoproducts were studied against a group of pathogenic strains. DIF and SARA revealed potency against both Gram-positive and -negative bacteria. The photoproducts also exhibited varying degrees of efficacies against the tested bacteria. Even without isolating the individual photoproducts, their impact on the aquatic environment could be assessed. Therefore, the present results call for prudence in estimating the fate of these compounds in water and in avoiding emergence of resistance in bacteria caused by the photoproducts of DIF and SARA.
اظهر المزيد [+] اقل [-]