خيارات البحث
النتائج 1 - 10 من 816
Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power
2008
Dizengremel, Pierre, P. | Le Thiec, Didier | Bagard, Mathieu | Jolivet, Yves, Y. | Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
International audience | The combination of stomatal-dependent ozone flux and total ascorbate level is currently presented as a correct indicator for determining the degree of sensitivity of plants to ozone. However, the large changes in carbon metabolism could play a central role in the strategy of the foliar cells in response to chronic ozone exposure, participating in the supply of reducing power and carbon skeletons for repair and detoxification, and modifying the stomatal mode of functioning. To reinforce the accuracy of the definition of the threshold for ozone risk assessment, it is proposed to also consider the redox pool (NAD(P)H), the ratio between carboxylases and the water use efficiency as indicators of the differential ozone tolerance of plants.
اظهر المزيد [+] اقل [-]Efficacy of marigold (Tagetes erecta L.) for the treatment of tannery and surgical industry wastewater under citric acid amendment: a lab scale study.
2023
Fatima, Arooj | Farid, Mujahid | Asam, Zaki Ul Zaman | Zubair, Muhammad | Farid, Sheharyaar | Abbas, Mohsin | Rizwan, Muhammad | Ali, Shafaqat
peer reviewed | Contamination of land and aquatic ecosystems with heavy metals (HMs) is a global issue having the persistent potential to damage the quality of food and water. In the present study, Tagetes erecta L. plants were used to assess their potential to uptake HMs from wastewater. Plants were grown in soil for 20 days and then transplanted in hydroponic system containing Hoagland nutrient solution. After more than 15 days of growth, plants were then subjected to wastewater from tannery and surgical industries in different concentrations ranging from 25 to 100% in combination of citric acid (5 and 10 mM). After 6 weeks of treatment, plants were collected and segmented into roots, stem, and leaves for characterizing the morphological properties including plant height, roots length, fresh and dry mass of roots, stem, and leaves. For evaluation of the effect of wastewater on the plants, photosynthetic pigments; soluble proteins; reactive oxygen species (ROS); antioxidant enzymes SOD, POD, CAT, and APX; and metal accumulation were analyzed. Application of industrial wastewater revealed a significant effect on plant morphology under wastewater treatments. Overall growth and physiological attributes of plant decreased, and metal accumulation enhanced with increasing concentration of wastewater. Similarly, the production of ROS and antioxidant enzymes were also increased. Chlorophyll, protein content, and enzyme production enhanced with CA (5 and 10 mM) mediation; however, ROS production and EL were reduced. Metals analysis showed that the maximum accumulation of Pb was in roots, while Cr and Ni in the stem which further increased under CA mediation. Overall, the metal accumulation ability was in the order of Pb > Ni > Cr under CA.
اظهر المزيد [+] اقل [-]Attempt of using peach plant antioxidant system elements changes as a test-factor of acid stress
2002
Klymenko, O.E. | Klymenko, M.I. (Nikita Botanical Gardens UAAS, Simferopol (Ukraine). Steppe Department)
It was established the strong changes in elements of antioxidation system by the influence of acid stress. The different reaction of varieties in these conditions was discovered. More early ripening varieties were more sensitive to acid stress. The relative indexes of plant antioxidation system conditions were calculated. The relative evaluation of the sensitivity of studied varieties to the acid stress was done by those indexes. We propose to use index of common recovering activity of tissue as a test index for the estimation of different peach varieties to acid stress
اظهر المزيد [+] اقل [-]Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
اظهر المزيد [+] اقل [-]Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile
2022
Qi, Ming | Wang, Nan | Xiao, Yuxin | Deng, Yuankun | Zha, Andong | Tan, Bie | Wang, Jing | Yin, Yulong | Liao, Peng
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
اظهر المزيد [+] اقل [-]Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus
2022
Farooq, Muhammad Ahsan | Islam, Faisal | Ayyaz, Ahsan | Chen, Weiqi | Noor, Yamna | Hu, Weizhen | Hannan, Fakhir | Zhou, Weijun
Melatonin (MT) and selenium (Se) application known to decrease heavy metal uptake and toxicity in plants. By mixing the Se in MT medium a new complex MT-Se nanoparticles (MT-Se NPs) was synthesized and we investigated the role of MT-Se NPs on B. napus growth and tolerance against As stress. The MT-Se particles significantly enhanced the plant growth and other associated physiological attributes under As stress. The As treatment at 80 μM was more phytotoxic, however MT-Se NPs application resulted in a substantial increase in leaf chlorophyll fluorescence, biomass accumulation, and decreased ROS relative to As stressed plants. The use of MT-Se NPs to As stressed plants reduced photosynthetic inhibition and oxidative stress and attenuated the increase in MDA and H₂O₂ contents. The application of MT-Se NPs also boosted the antioxidant enzymes activities such as SOD, POD and CAT as well as the APX, GR and GSH activates under As stress. The results also showed MT-Se NPs treatments alleviated the growth inhibition induced by As and reduced the accumulation of As in leaves and roots of B. napus seedlings. Moreover, treatment with MT-Se NPs improved the plant growth more successfully than treatment of MT and Se alone. This study explored the mechanism of melatonin and selenium efficiency in the composition can be jointly encouraged to exert synergistic effects and boost plant enzymatic activities.
اظهر المزيد [+] اقل [-]Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen
2022
Akiyama Kitamura, Rafael Shinji | Vicentini, Maiara | Perussolo, Maiara Carolina | Lirola, Juliana Roratto | Cirilo dos Santos, Camilla Freitas | Moreira Brito, Júlio César | Cestari, Marta Margarete | Prodocimo, Maritana Mela | Gomes, Marcelo Pedrosa | Silva de Assis, Helena Cristina
Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 μg.L⁻¹) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 μg.L⁻¹. In addition, at 100 μg.L⁻¹, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.
اظهر المزيد [+] اقل [-]Copper stress in grapevine: Consequences, responses, and a novel mitigation strategy using 5-aminolevulinic acid
2022
Yang, Yuxian | Fang, Xiang | Chen, Mengxia | Wang, Lingyu | Xia, Jiaxin | Wang, Zicheng | Fang, Jinggui | Tran, Lam-son Phan | Shangguan, Lingfei
Improper application of copper-based fungicides has made copper stress critical in viticulture, necessitating the need to identify substances that can mitigate it. In this study, leaves of ‘Shine Muscat’ (‘SM’) grapevine seedlings were treated with CuSO₄ solution (10 mM/L), CuSO₄ + 5-aminolevulinic acid (ALA) (50 mg/L), and distilled water to explore the mitigation effect of ALA. Physiological assays demonstrated that ALA effectively reduced malondialdehyde accumulation and increased peroxidase and superoxide dismutase activities in grapevine leaves under copper stress. Copper ion absorption, transport pathways, chlorophyll metabolism pathways, photosynthetic system, and antioxidant pathways play key roles in ALA alleviated-copper stress. Moreover, expression changes in genes, such as CHLH, ALAD, RCA, and DHAR, play vital roles in these processes. Furthermore, abscisic acid reduction caused by NCED down-regulation and decreased naringenin, leucopelargonidin, and betaine contents confirmed the alleviating effect of ALA. Taken together, these results reveal how grapevine responds to copper stress and the alleviating effects of ALA, thus providing a novel means of alleviating copper stress in viticulture.
اظهر المزيد [+] اقل [-]Microplastics in plant-soil ecosystems: A meta-analysis
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
اظهر المزيد [+] اقل [-]Canidin-3-glucoside prevents nano-plastics induced toxicity via activating autophagy and promoting discharge
2021
Chen, Wen | Chu, Qiang | Ye, Xiang | Sun, Yuhao | Liu, Yangyang | Jia, Ruoyi | Li, Yonglu | Tu, Pengcheng | Pan, Jijiong | Yu, Ting | Chen, Chuan | Zheng, Xiaodong
Increasing attention has been brought to microplastics pollution recently, while emerging evidences indicate that nano-plastics degraded from microplastics are more of research significance owing to stronger toxicity. However, there is little study focused on the prevention of nano-plastics induced toxicity until now. Canidin-3-glucoside (C3G), a natural anthocyanin proved to possess multiple functions like antioxidant and intestinal tissue protection. Thus, we proposed whether C3G could act as a molecular weapon against nano-plastics induced toxicity. In Caco2 cell and Caenorhabditis elegans (C. elegans) models, we found that polystyrene (PS) nano-plastics exposure resulted in physiological toxicity and oxidative damage, which could be restored by C3G. More significantly in Caco2 cells, we observed that autophagy was activated via Sirt1-Foxo1 signaling pathway to attenuate PS induced toxicity after C3G intervention and further verified by adding autophagy inhibitor 3-Methyladenine (3-MA). Meanwhile, PS co-localization with lysosomes was observed, indicating the encapsulation and degradation of PS. In C. elegans, by detecting LGG-1/LC3 expression in GFP-targeted LGG-1 report gene (LGG-1:GFP) labeled transgenic DA2123 strain, the co-localization of LGG-1:GFP with PS was found as well, means that autophagy is involved in C3G’s beneficial effects. Furthermore, we were surprised to find that C3G could promote the discharge of PS from N2 nematodes, which reduces PS toxicity more directly.
اظهر المزيد [+] اقل [-]