خيارات البحث
النتائج 1 - 6 من 6
Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways
2021
Li, Dong | Zhou, Chunran | Zou, Nan | Wu, Yangliu | Zhang, Jingbang | An, Quanshun | Li, Jia-Qi | Pan, Canping
An emerging stress of pesticides in plant and soil is closely watched as it affects crop antioxidant systems, nutritional quality, and flavor. Although selenium (Se) can enhance the resistance of plants, the protective mechanism of nanoselenium is still not known under the long-term pesticide stress in tea trees. In this study, we investigated the potential effects of foliar application of nanoselenium for a two-year field experiment on tea plants under pesticide-induced oxidative stress. Compared to control, nano-Se (10 mg/L) markedly enhanced the protein, soluble sugar, carotenoid, tea polyphenols, and catechins contents. High levels of theanine, glutamic acid, proline, and arginine were found to be induced most likely by adjusting the GS-GOGAT cycle. Se-supplementation may promote tea leaves’ secondary metabolism, thus increasing the accumulation of total phenols and flavonoids (apigenin, kaempferol, quercetin, myricetin, and rutin). It also minimized the accumulation of malondialdehyde, hydrogen peroxide, and superoxide anion by activating the antioxidants enzymes including in the AsA-GSH cycle. Selenium-rich tea also showed better fragrance and flavor. In summary, nano-Se can ameliorate the nutrients quality and abiotic stresses resistance of crops.
اظهر المزيد [+] اقل [-]Drosophila ecdysone receptor activity-based ex vivo assay to assess the endocrine disruption potential of environmental chemicals
2022
Pandey, Anuj Kumar | Sharma, Vandana | Ravi Ram, Kristipati
Insect pollinators, critical for both agricultural output and the ecosystem, are declining at an alarming levels partly due to human-made chemicals. Majority of environmental chemicals hamper the endocrine function and studies on the same in insects remain neglected. Here, we report a Drosophila-based ex vivo assay system that employs a reproductive tissue from transgenic males carrying a reporter gene (lacZ) downstream of ecdysone receptor response element (EcRE) and permits the evaluation of chemical-mediated activity modulation of all three isoforms of ecdysone receptor, which are critical for male fertility. We show agonistic [plasticizers, cypermethrin, atrazine, methyl parathion, imidacloprid, cadmium chloride, mercuric chloride or 3-(4-methylbenzylidene) camphor] or antagonistic (apigenin, tributyltin chloride) effects or lack of effect thereof (rutin hydrate, dichlorvos, lead acetate, parabens) for seven different classes of environmental chemicals on ecdysone receptor activity reflecting the specificity and sensitivity of the developed ex vivo assay. Exposure to a few of these chemicals in vivo hampers the fertility of Drosophila males, thus linking the observed endocrine disruption to a quantifiable reproductive phenotype. The developed ex vivo assay offers a quick Drosophila-based screening tool for throughput monitoring of environmental chemicals for their ability to hamper the endocrine function of insect pollinators and other invertebrates.
اظهر المزيد [+] اقل [-]Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells
2022
Al-Otaibi, Aljohra M. | Al-Gebaly, Asma S. | Almeer, Rafa | Albasher, Gadah | Al-Qahtani, Wedad S. | Abdel Moneim, Ahmed E.
The utilization of novel compounds as cancer treatments offers enormous potential in this field. The advantages of nanomedicine-based therapy include efficient cellular uptake and selective cell targeting. In this study, we employ selenium nanoparticles’ green-synthesized by apigenin (SeNPs-apigenin) to treat breast cancer. We used various assays to show that SeNPs-apigenin can reduce MCF-7 cell viability and trigger apoptosis in vitro. Flow cytometry and PCR methods were used to detect apoptosis, while cell migration and invasion methods were used to quantify the possible effect of SeNPs-apigenin therapy on cell migration and invasion. According to cytotoxicity testing, the SeNPs-apigenin treatment can successfully limit MCF-7 cell proliferation and viability in a concentration-dependent manner. Flow cytometric and PCR analyses revealed that SeNPs-apigenin treatment induced apoptosis in MCF-7 cells, demonstrating that SeNPs-apigenin treatment could directly target Bcl-2, Bax, and caspase-3 and result in the discharge of cytochrome C from mitochondria into the cytosol, accompanied by the initiation of cell death, leading to permanent DNA damage and killing of MCF-7 cells. Furthermore, treatment with SeNPs-apigenin increased reactive oxygen species production and oxidative stress in MCF-7 cells. Our findings indicate that SeNPs-apigenin has cytotoxic potential in the treatment of breast cancer.
اظهر المزيد [+] اقل [-]Ecophysiological, anatomical, and apigenin changes due to uptake and accumulation of cadmium in Matricaria chamomilla L. flowers in hydroponics
2021
Zarinkamar, Fatemeh | Moradi, Azar | Davoodpour, Maryam
Cadmium (Cd) is one of the most important heavy metals in the environment which has several effects on the morphology, physiology, and anatomy of plants. It is a mobile heavy metal that can be transferred easily into plants, thus entering into the human food chain. Chamomile (Matricaria chamomilla L.) as an important medicinal plant can uptake and accumulate Cd in its root and aerial organs. In this research, the effects of different concentrations of Cd (90, 180, and 360 μM) were investigated on the growth parameters, anatomical features, and enzymatic antioxidant activities in flowers of chamomile after 7 days of exposure. The content of apigenin, a flavone compound mostly synthesizing in chamomile flowers, was also analyzed after 72 h from Cd treatment. The results showed that all concentrations of Cd reduced the length and biomass of roots and shoots, the diameter of flowers, as well as the number of pollen grains in tubular florets, while increased trichome density on the florets. Cd-treated plants showed an increase in antioxidant enzymes, superoxide dismutase (SOD), and peroxidase (POX) activities. After 7 days of treatment to Cd major concentration, flowers accumulated Cd and enhanced the apigenin production with the increase of Cd contamination in hydroponic solution. This increase of apigenin is most likely due to its antioxidant and sequestering property as a resistance response to Cd excess.
اظهر المزيد [+] اقل [-]Plant isoflavones can prevent adverse effects of benzene on porcine ovarian activity: an in vitro study
2020
Sirotkin, Alexander | Záhoranska, Zuzana | Tarko, Adam | Popovska-Percinic, Florina | Alwasel, Saleh | Harrath, Abdel Halim
We evaluated the influence of the oil-related environmental contaminant benzene (0, 10, 100, or 1000 ng/mL) alone and in combination with apigenin, daidzein, or rutin (10 μg/mL each) on viability; proliferation (accumulation of proliferating cell nuclear antigen); apoptosis (accumulation of Bax); and release of progesterone (P), testosterone (T), and estradiol (E) in cultured porcine ovarian granulosa cells. Cell viability; proliferation; apoptosis; and release of P, T, and E have been analyzed by the trypan blue test, quantitative immunocytochemistry, and ELISA, respectively. Benzene did not affect apoptosis, but reduced ovarian cell viability and P and E release, and promoted proliferation and T output. Apigenin did not affect cell viability, but stimulated proliferation and T and E release, and inhibited apoptosis and P secretion. It prevented and reversed the action of benzene on proliferation and P and T release, and induced the inhibitory action of benzene on apoptosis. Daidzein promoted cell viability, proliferation, P release, but not apoptosis and T or E release. Daidzein induced the stimulatory effect of benzene on T, without modifying other effects. Rutin administered alone reduced cell viability and apoptosis, and promoted cell proliferation. Furthermore, rutin prevented and reversed the effect of benzene on proliferation and P and E release. These observations suggest the direct action of benzene and plant polyphenols on basic ovarian cell functions, and the ability of apigenin and rutin, but not of daidzein, to prevent benzene effects on the ovary.
اظهر المزيد [+] اقل [-]Protective effect of Moringa oleifera leaves ethanolic extract against thioacetamide-induced hepatotoxicity in rats via modulation of cellular antioxidant, apoptotic and inflammatory markers
2019
Mousa, Ahmed Abdelmoniem | El-Gansh, Hala Ali Ibrahim | Eldaim, Mabrouk Attia Abd | Mohamed, Mostafa Abd El-Gaber | Morsi, Azza Hassan | El Sabagh, Hesham Saad
The current study was conducted to evaluate the ameliorative and protective potentials of Moringea oleifera leaves ethanolic extract (MOLE) against thioacetamide (TAA) toxicity. A total of 58 male albino rats were randomly assigned into six experimental groups. G1, rats received distilled water. G2, rats were injected with a single dose of TAA (200 mg/kg BW) i.p. G3, rats were given MOLE (300 mg/kg BW) orally for 26 days. G4, rats were injected TAA as in G2 and treated with MOLE as G3. G5, rats were kept for 26 days without treatment then on day 27 injected with TAA as in G2. G6, rats were given MOLE for 26 days then on day 27 injected with TAA. Phytochemical analysis of MOLE indicated the presence of kaempferol, kaempferol malonylglucoside, kaempferol hexoside, kaempferol -3-O-glucoside, kaempferol-3-O-acetyl-glucoside, cyanidin -3-O-hexoside, ellagic acid, quercetin, quercetin-3-O-glucoside, and apigenin glucoside. Intoxication of rats with TAA significantly elevated activities of serum AST, ALT, and ALP; concentrations of malondialdehyde, nitric oxide, and hepatic tissue protein expression of caspase 3 and COX2 with alteration of the histological structures of hepatic tissues, while it decreased serum levels of total protein, albumin, and hepatic tissue contents of reduced glutathione. Also, TAA intoxication resulted in 62.5% mortality in rats of G5. Treatment of TAA intoxicated rats (G4) with MOLE ameliorated the toxic effects of TAA on hepatic tissue structure and function. It decreased serum activities of AST, ALT, and ALP; enhanced hepatic GSH concentration; reduced pathological alterations and lipid peroxidation; and downregulated caspase 3 and COX2 proteins expression in hepatic tissue. In addition, MOLE protected rats of G6 from TAA-induced hepatic tissues injury and dysfunction, and increased survival rate of rats. In conclusion, MOLE had both ameliorating and protecting potentials against TAA-induced rats liver damage through regulation of antioxidant, anti-apoptotic, and inflammatory biomarkers. Graphical abstract
اظهر المزيد [+] اقل [-]