خيارات البحث
النتائج 1 - 3 من 3
Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles
2019
Liu, Kang | Cai, Miaomiao | Hu, Chengxiao | Sun, Xuecheng | Cheng, Qin | Jia, Wei | Yang, Tao | Nie, Min | Zhao, Xiaohu
Sclerotinia stem rot (SSR), a soil-borne plant disease, cause the yield loss of oilseed rape. Selenium (Se), a beneficial element of plant, improves plant resistance to pathogens, and regulates microbial communities in soil. Soil microbial communities has been identified to play an important role in plant health. We studied whether the changes in soil microbiome under influence of Se associated with oilseed rape health. SSR disease incidence of oilseed rape and soil biochemical properties were investigated in Enshi district, “The World Capital of Selenium”, and soil bacterial and fungal communities were analyzed by 16S rRNA and ITS sequencing, respectively. Results showed that Se had a strong effect on SSR incidence, and disease incidence inversely related with plant Se concentration. Besides, soil Se enhanced the microbiome diversities and the relative abundance of PGPR (plant growth promoting rhizobacteria), such as Bryobacter, Nitrospirae, Rhizobiales, Xanthobacteraceae, Nitrosomonadaceae and Basidiomycota. Furthermore, Soil Se decreased the relative abundance of pathogenic fungi, such as Olpidium, Armillaria, Coniosporium, Microbotryomycetes and Chytridiomycetes. Additionally, Se increased nitrogen metabolism, carbohydrate metabolism and cell processes related functional profiles in soil. The enrichment of Se in plants and improvement of soil microbial community were related to increased plant resistance to pathogen infection. These findings suggested that Se has potential to be developed as an ecological fungicide for biological control of SSR.
اظهر المزيد [+] اقل [-]Decolorization of Azo, Triphenylmethane and Anthraquinone Dyes by Laccase of a Newly Isolated Armillaria sp. F022
2012
Hadibarata, Tony | Yusoff, Abdull Rahim Mohd | Aris, Azmi | Salmiati, | Hidayat, Topik | Kristanti, Risky Ayu
A newly isolated white-rot fungus, Armillaria sp. strain F022, was isolated from the decayed wood in a tropical rain forest. Strain F022 was capable of decolorizing a variety of synthetic dyes, including azo, triphenylmethane, and anthraquinone dyes, with an optimal efficiency of decolorization obtained when dyes added after 96 h of culture, with the exception of Brilliant Green. All of the tested dyes were decolorized by the purified laccase in the absence of any redox mediators, but only a few were completely removed, while others were not completely removed even when decolorization time was increased. The laccase, with possible contributions from unknown enzymes, played a role in the decolorization process carried out by Armillaria sp. F022 cultures, and this biosorption contributed a negligible part to the decolorization by cultures. The effect of dye to fungal growth was also investigated. When dyes were added at 0 h of culture, the maximum dry mycelium weight (DMW) values in the medium containing Brilliant Green were 1/6 of that achieved by the control group. For other dyes, the DMW was similar with control. The toxic tolerance of dye for the cell beads was excellent at least up to a concentration of 500 mg/l. The optimum conditions for decolorization of three synthetic dyes are at pH 4 and 40°C.
اظهر المزيد [+] اقل [-][Forest protection measures in afforestation sites planted with tree species suitable for the conversion of stands of the Ore Mountains damaged by air pollution]
1990
Prien, S. (Technische Univ. Dresden, Tharandt (Germany). Sektion Forstwirtschaft) | Otto, L.F.