خيارات البحث
النتائج 1 - 10 من 48
Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains النص الكامل
2018
Asemoloye, Michael Dare | Ahmad, Rafiq | Jonathan, Segun Gbolagade
Fungi are well associated with the degradation of hydrocarbons by the production of different enzymes, among which catalases (CBH), laccases (LCC) and peroxidases (LiP and MnP) are of immense importance. In this study, crude oil tolerance and enzyme secretions were demonstrated by rhizospheric fungal strains. Four most abundant strains were isolated from the rhizosphere of grasses growing in aged oil spill sites and identified through morphological characterization and molecular PCR-amplification of 5.8–28S ribosomal rRNA using ITS1 and ITS4 primers. These strains were subjected to crude oil tolerance test at 0–20% concentrations. Presence and transcriptase responses of putative genes lig (1–6), mnp, cbh (1.1, 1.1 and 11), and lcc encoding lignin peroxidase, manganese peroxidase, catalase, and laccase enzymes respectively were also studied in these strains using RT-PCR. In addition, activities of secreted enzymes by each strain were studied in aliquots. The strains were identified as Aspergillus niger asemoA (KY473958), Talaromyces purpurogenus asemoF (KY488463), Trichoderma harzianum asemoJ (KY488466), and Aspergillus flavus asemoM (KY488467) through sequencing and comparing the sequences’ data at NCBI BLAST search software. All the isolated strains showed tolerance to crude oil at 20% concentration, but the growth rate reduced with increasing in oil concentrations. All the isolated strains possess the tested genes and lig 1–6 gene was overexpressed in A. niger and T. harzianum while lcc and mnp genes were moderately expressed in all the four strains. Almost 145 U.mL⁻¹ of lignin and manganese peroxidase, 87 U.mL⁻¹ of catalase, and 180 U.mL⁻¹ of laccase enzymes were produced by these strains and it was also observed that these strain mostly produced studied enzymes in response to increasing crude oil concentrations. Considering the robust nature and diverse production of these catalytic enzymes by these strains, they can be exploited for various bioremediation technologies as well as other biotechnological applications.
اظهر المزيد [+] اقل [-]Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites النص الكامل
2016
Boriová, Katarína | Urík, Martin | Bujdoš, Marek | Pifková, Ivana | Matúš, Peter
Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger’s exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L−1, respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the extraction procedure inspired by bio-assisted extraction of aluminium by common soil fungus A. niger.
اظهر المزيد [+] اقل [-]Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek النص الكامل
2022
Tauqeer, Hafiz Muhammad | Basharat, Zeeshan | Adnan Ramzani, Pia Muhammad | Farhad, Muniba | Lewińska, Karolina | Turan, Veysel | Karczewska, Anna | Khan, Shahbaz Ali | Faran, Gull-e | Iqbal, Muhammad
Soil receiving discharges from Pb-acid batteries dismantling and restoring units (PBS) can have a high concentration of phytoavailable Pb. Reducing Pb phytoavailability in PBS can decline Pb uptake in food crops and minimize the risks to humans and the environment. This pot study aimed to reduce the concentration of phytoavailable Pb in PBS through Aspergillus niger (A. niger)−mediated release of PO₄³⁻ from fish bone [Apatite II (APII)] products. The PBS (Pb = 639 mg kg⁻¹ soil) was amended with APII powder (APII−P), APII char (APII−C), and A. niger inoculum as separate doses, and combining A. niger with APII−P (APII−P + A. niger) and APII−C (APII−C + A. niger). The effects of these treatments on reducing the phytoavailability of Pb in PBS and its uptake in fenugreek were examined. Additionally, enzymatic activities and microbial biomass carbon (MBC) in the PBS and the indices of plant physiology, nutrition, and antioxidant defense machinery were scoped. Results revealed that the APII−C + A. niger treatment was the most efficient one. Compared to the control, it significantly reduced the Pb phytoavailability (DTPA-extractable Pb fraction) in soil and its uptake in plant shoots, roots, and grain, up to 61%, 83%, 74%, and 92%. The grain produced under APII−C + A. niger were safe for human consumption as Pb concentration in grain was 4.01 mg kg⁻¹ DW, remaining within the permissible limit set by WHO/FAO (2007). The APII−C + A. niger treatment also improved soil pH, EC, CEC, MBC, available P content and enzymatic activities, and the fenugreek quality parameters. A. niger played a significant role in solubilizing PO₄³⁻ from APII−C, which reacted with Pb and formed insoluble Pb-phosphates, thereby reducing Pb phytoavailability in PBS and its uptake in plants. This study suggests APII−C + A. niger can remediate Pb-polluted soils via reducing Pb phytoavailability in them.
اظهر المزيد [+] اقل [-]Indoor and outdoor microbial aerosols at the holy mosque: A case study النص الكامل
2015
Mashat, Bassam
The aim of this study was to evaluate bacterial and fungal aerosol concentrations at the holy mosque (Al-Masjid Al-Haram). Air samples were collected from different locations inside and outside the holy mosque, during the month of Ramadan-2011 (the fasting month), using a portable Air-port MD8 gelatin filter sampler. Trypticase soya agar and Capek's dox agar media were used to count bacteria and fungi, respectively. The mean concentrations of airborne bacteria and fungi ranged between 105–106 colony forming unit per cubic meter of air (CFU/m3) outside, and ∼102–105 CFU/m3 inside locations. The highest outside bacterial concentrations 106 CFU/m3 were found at the Al Umra, Al Fatah and eastern plazas, and the highest inside fungal concentrations ∼105 CFU/m3 were found at the courtyard, expansion of 1st floor, and roof. Significant differences (P < 0.05) were found between bacterial and fungal concentrations inside and outside sampling locations, higher concentrations shifted towards to outside locations. Significant differences were also found between the bacterial and fungal concentrations inside–unclosed and semi-closed (P < 0.05) with inside-closed locations. Gram-positive bacteria, Bacillus and Micrococcus, and fungi, Aspergillus niger were the dominant microbial aerosol genera. The obtained data is considered a step to make up the gap about airborne microbial contamination inside the holy mosque, and microbial air quality should be studied along over the year at the holy mosque in the future.
اظهر المزيد [+] اقل [-]Bioremoval of Different Heavy Metals in Industrial Effluent by the Resistant Fungal Strain Aspergillus niger النص الكامل
2021
K. J. Naveen Kumar and J. Prakash
Developing countries are increasingly concerned with pollution due to toxic heavy metals in the environment. Unlike most organic pollutants which can be destroyed, toxic metal ions released into the environment often persist indefinitely circulating and eventually accumulating throughout the food chain thus posing a serious threat to mankind. The use of biological materials for heavy metal removal or recovery has gained importance in recent years due to their good performance and low cost. Among the various sources, both live and inactivated biomass of organisms exhibits interesting metal binding capacities. Their complex cell walls contain high content of functional groups like amino, amide, hydroxyl, carboxyl, and phosphate which have been implicated in metals binding. In the present study, Aspergillus niger was used to analyze the metal uptake from an aqueous solution. The determination of Cu+2, Pb+2, Cd+2, Zn+2, Co-2 and Ni+2 in samples was carried out by differential Pulse Anodic Voltammetry (DPASV) and the Voltammograms. Production of oxalic acid was carried out by submerged fermentation. The organism used in the present study has the ideal properties to sequester toxic metals and grow faster.
اظهر المزيد [+] اقل [-]Co-substrate-mediated utilization of high concentration of phenol by Aspergillus niger FP7 and reduction of its phytotoxicity on Vigna radiata L النص الكامل
2021
Bhattacharya, Sourav | Das, Arijit | Krishnan, Kavitha | Patil, Nischita A. | Sadique, Jaffar
Phenol and its derivatives behave as mutagens, teratogens and carcinogens inducing adverse physiological effects and are considered environmental hazards. The present study focuses on high concentration phenol utilization by Aspergillus niger FP7 under various physicochemical parameters. The soil remediation potential of the culture for reducing phenol toxicity against Vigna radiata L. seed germination was also evaluated along with the extent of phenol utilization using high-performance liquid chromatography. Aspergillus niger FP7 showed phenol tolerance up to 1000 mg/l, beyond which there was a sharp reduction in phenol utilization. Supplementation of the mineral salt medium with glucose and peptone and application of a 100 rpm agitation rate enhanced phenol utilization (up to 88.3%). Phenol utilization efficiency decreased (up to 29.6%) when cadmium and mercury salts were present, but the same improved (59.4–75.5%) by the incorporation of cobalt, copper and zinc salts. Vigna radiata L. seeds sown in the non-augmented soil revealed a 3.27% germination index, and with fungal augmentation, the germination index improved (97.3%). The non-augmented soil demonstrated 3.1% phenol utilization, while for the augmented soil, the utilization was 79.3%. Based on the phytotoxicity study and chromatographic analysis, it could be inferred that Aspergillus niger FP7 significantly enhanced phenol utilization in soil. In the future, Aspergillus niger FP7 could be of potential use in bioremediation of sites polluted with high concentrations of phenol.
اظهر المزيد [+] اقل [-]Radiation-induced synthesis of copper sulfide nanotubes with improved catalytic and antibacterial activities النص الكامل
2021
Bekhit, Mohamad | Abo El Naga, Ahmed O. | El Saied, Mohamed | Abdel Maksoud, Mohamed I. A.
In the current paper, copper sulfide nanotubes have been successfully synthesized via the green, simple, and effective gamma-radiolysis method without adding any capping or reducing agents. The structural and morphological characteristics of the as-prepared CuS nanotubes were investigated by X-ray diffraction (XRD), N₂ adsorption-desorption measurements at 77 K, transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) spectroscopy, which all demonstrated the formation of pure CuS covellite phase with tubular morphology. The synthesized CuS nanotubes possessed not only high activity towards the reduction of both cationic (methylene blue) and anionic (Congo red) dyes in the presence of NaBH₄ but also exhibited excellent reusability. In addition, the pseudo-first-order kinetic model represented the reduction of MB very well, and the value of the normalized rate constant (2.4 × 10⁻² s⁻¹ mg⁻¹) was higher than those of other solid catalysts reported in the literature. Ultimately, CuS nanotubes were found to have a broad-spectrum microbicidal action against the common microbiota, such as Gram-positive (exemplified by Bacillus subtilis and Staphylococcus aureus), Gram-negative bacteria (exemplified by Pseudomonas aeruginosa and Escherichia coli), yeast (exemplified by Candida albicans), and plant pathogenic fungi (exemplified by Aspergillus niger).
اظهر المزيد [+] اقل [-]The dissolution of fluorapatite by phosphate-solubilizing fungi: a balance between enhanced phosphorous supply and fluorine toxicity النص الكامل
2021
Shao, Xiaoqing | Hao, Weiduo | Konhauser, Kurt O. | Gao, Yanan | Tang, Lingyi | Su, Mu | Li, Zhen
Fluorapatite (FAp) is the largest phosphorous (P) reservoir on Earth. However, due to its low solubility, dissolved P is severely deficient in the pedosphere. Fungi play a significant role in P dissolution via excretion of organic acids, and in this regard, it is important to understand their impact on P cycling. The object of this study was to elucidate the balance between P release and F toxicity during FAp dissolution. The bioweathering of FAp was assisted by a typical phosphate-solubilizing fungus, Aspergillus niger. The release of elements and microbial activities were monitored during 5-day incubation. We found that the release of fluorine (F) was activated after day 1 (~90 mg/L), which significantly lowered the phosphate-solubilizing process by day 2. Despite P release from FAp being enhanced over the following 3 days, decreases in both the amount of biomass (52% decline) and the respiration rate (81% decline) suggest the strong inhibitory effect of F on the fungus. We thus concluded that F toxicity outweighs P supply, which in turn inhibits fungi growth and prevents further dissolution of FAp. This mechanism might reflect an underappreciated cause for P deficiency in soils.
اظهر المزيد [+] اقل [-]TLC bioautography–guided isolation of essential oil components of cinnamon and clove and assessment of their antimicrobial and antioxidant potential in combination النص الكامل
2021
Purkait, Shilpa | Bhattacharya, Abhishek | Bag, Anwesa | Chattopadhyay, Rabi Ranjan
This study aimed to evaluate possible synergistic interactions on antimicrobial and antioxidant efficacy of clove and cinnamon oil components in combination and characterization of compounds responsible for synergistic interactions using TLC bioautography followed by checkerboard titration, isobologram analysis, and spectrometric characterization. Among the combinations tested, cinnamaldehyde from cinnamon oil and eugenol from clove oil in combination showed a synergistic antimicrobial interaction against foodborne microbes Listeria monocytogenes (fractional inhibitory concentration index (FICI): 0.31), Salmonella typhimurium (FICI: 0.41), and Aspergillus niger (FICI: 0.48), and synergistic antioxidant efficacy (combination index: 0.78) in in vitro model. Cinnamaldehyde/eugenol blend did not show any cytotoxic effect (IC₅₀ > 1000 μg/ml) in human normal keratinocyte cell line. The results provide evidence that the cinnamaldehyde/eugenol blend may help in designing a more potent novel natural antimicrobial and antioxidant agent in food and pharmaceutical industries.
اظهر المزيد [+] اقل [-]Bioaugmentation and Biostimulation of Total Petroleum Hydrocarbon Degradation in a Petroleum-contaminated Soil with Fungi Isolated from Olive Oil Effluent النص الكامل
2019
Essabri, Abduelbaset M. A. | Aydinlik, Nur Pasaoglulari | Williams, Ndifreke Etuk
In degradation of total petroleum hydrocarbon, 35 isolates belonging to 11 genera were sanitized and 3 isolates as well as their consortium were initiated to be able to raise in association with petroleum hydrocarbon as sole source of carbon under in vitro circumstances. The isolated strains were grounded on internal transcribed spacer (ITS) rDNA sequence analysis. The fungal strains with the utmost potentiality to reduce petroleum hydrocarbon without emerging antagonistic activities were Aspergillus niger, Penicillium ochrochloron, and Trichodema viride. For fungal growth on petroleum hydrocarbon, P. ochrocholon gained weight of 44%, A. niger 49%, and T. viride 39% within the first 30–40 days. As compared to the controls, these fungi accumulated significantly higher biomass, produced extracellular enzymes, and degraded total petroleum hydrocarbon and A. niger strongly degraded total petroleum hydrocarbon with a degradation of about 71.19%. These observations with GC-MS data confirm that these isolates displayed rapid total petroleum hydrocarbon biodegradation within a period of 60 days and the half-life showed that A. niger was the shortest with t1/2 = 21.280 day⁻¹ corresponding to the highest percent degradation of 71.19% and first-order kinetic fitted into the present study. By multivariate analysis, five main factors were identified by factor analysis (FA). The first factor (F1) of the fungi species accounts for 20.0% which signifies that fungi species controls the degradation of petroleum variability and hierarchical cluster analysis (HCA) as a dendrogram with five observations and three variables shows two predominant clusters order cluster 1 > 2.
اظهر المزيد [+] اقل [-]