خيارات البحث
النتائج 1 - 10 من 64
Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India النص الكامل
2021
Sahu, Saroj Kumar | Mangaraj, Poonam | Beig, Gufran | Samal, Anuja | Chinmay Pradhan, | Dash, Swetaleena | Tyagi, Bhishma
Biomass burning, a recurring global phenomenon is also considered an environmental menace, making headlines every year in India with onset of autumn months. Agriculture is demographically the broadest economic sector and plays a significant role in the overall socio-economic fabric of India. Hence, disposal of crop residue is done mainly by burning leading to deterioration of air quality. Residue burning in parts of India is blamed for changing air quality in nearby cities. The spatial distribution of these emissions has always been a challenge due to various data constraints. We hereby present a comprehensive spatially resolved seasonal high resolution gridded (∼10 km × ∼10 km) emission inventory of major pollutants from crop residue burning source in India for the latest year 2018. The winter months contributes almost around ∼50% of total emission followed by summer (∼48%), which is the prime cause of changing air quality in nearby cities. Among all the crops; rice, wheat, maize and sugarcane accounts ∼90% of total PM₁₀ load in the country. The estimated emission for PM₂.₅, PM₁₀, BC and OC, CO, NOx, SO₂, VOC, CH₄ and CO₂ are found to 990.68 Gg/yr, 1231.26 Gg/yr, 123.33 Gg/yr, 410.99 Gg/yr, 11208.18 Gg/yr, 484.55 Gg/yr, 144.66 Gg/yr, 1282.95 Gg/yr, 785.56 Gg/yr and 262051.06 Gg/yr respectively. The cropping pattern and its role in different geographic regions are analysed to identify all potential emission hotspots regions scattered across the country. The developed gridded emissions inventory is envisaged to serve as an important input to regional atmospheric chemistry transport model to better quantify its contribution in deteriorating air quality in various regions of India, paving the way to policy makers to better plan the mitigation and control strategies. The developed fundamental tool is likely to be useful for air quality management.
اظهر المزيد [+] اقل [-]Ambient concentrations and deposition rates of selected reactive nitrogen species and their contribution to PM2.5 aerosols at three locations with contrasting land use in southwest China النص الكامل
2018
Song, Ling | Liu, Xuejun | Skiba, Ute | Zhu, Bo | Zhang, Xifeng | Liu, Meiyu | Twigg, Marsailidh | Shen, Jianlin | Dore, Anthony | Reis, Stefan | Coyle, Mhairi | Zhang, Wen | Levy, Peter | Fowler, David
The fast economic development of southwest China has resulted in significant increases in the concentrations of reactive nitrogen (Nr) in the atmosphere. In this study, an urban (Chengdu, CD), suburban (Shifang, SF) and agriculture (Yanting, YT) – dominated location in the Sichuan Province, southwest China, were selected to investigate the atmospheric composition of Nr, their concentrations and deposition rates. We measured Nr concentrations in precipitation (NH₄⁺, NO₃⁻ and organic N (DON)), the gas phase (NH₃ and NO₂), and the aerosol particles (PM₂.₅), and calculated their fluxes over a two year period (2014–2016). Total annual N deposition rates were 49.2, 44.7 and 19.8 kg N ha⁻¹ yr⁻¹ at CD, SF and YT, respectively. Ammonia concentrations were larger at the urban and suburban sites than the agricultural site (12.2, 14.9, and 4.9 μg N m⁻³ at CD, SF and YT, respectively). This is consistent with the multitude of larger sources of NH₃, including city garbage, livestock and traffic, in the urban and suburban areas. Monthly NO₂ concentrations were lower in warmer compared to the colder months, but seasonal differences were insignificant. Daily PM₂.₅ concentrations ranged from 7.7 to 236.0, 5.0–210.4 and 4.2–128.4 μg m⁻³ at CD, SF and YT, respectively, and showed significant correlations with fine particulate NH₄⁺ and NO₃⁻ concentrations. Ratios of reduced to oxidized N were in the range of 1.6–2.7. This implies that the control of reduced Nr especially in urban environments is needed to improve local air quality.
اظهر المزيد [+] اقل [-]Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China النص الكامل
2017
Zhang, Chunlin | Geng, Xuesong | Wang, Hao | Zhou, Lei | Wang, Boguang
Atmospheric ammonia (NH3), a common alkaline gas found in air, plays a significant role in atmospheric chemistry, such as in the formation of secondary particles. However, large uncertainties remain in the estimation of ammonia emissions from nonagricultural sources, such as wastewater treatment plants (WWTPs). In this study, the ammonia emission factors from a large WWTP utilizing three typical biological treatment techniques to process wastewater in South China were calculated using the US EPA's WATER9 model with three years of raw sewage measurements and information about the facility. The individual emission factors calculated were 0.15 ± 0.03, 0.24 ± 0.05, 0.29 ± 0.06, and 0.25 ± 0.05 g NH3 m−3 sewage for the adsorption-biodegradation activated sludge treatment process, the UNITANK process (an upgrade of the sequencing batch reactor activated sludge treatment process), and two slightly different anaerobic-anoxic-oxic treatment processes, respectively. The overall emission factor of the WWTP was 0.24 ± 0.06 g NH3m−3 sewage. The pH of the wastewater influent is likely an important factor affecting ammonia emissions, because higher emission factors existed at higher pH values. Based on the ammonia emission factor generated in this study, sewage treatment accounted for approximately 4% of the ammonia emissions for the urban area of South China's Pearl River Delta (PRD) in 2006, which is much less than the value of 34% estimated in previous studies. To reduce the large uncertainty in the estimation of ammonia emissions in China, more field measurements are required.
اظهر المزيد [+] اقل [-]Characteristics of elemental and Pb isotopic compositions in aerosols (PM10-2.5) at the Ieodo Ocean Research Station in the East China Sea النص الكامل
2017
Lee, Sanghee | Han, Changhee | Shin, Daechol | Hur, Soon Do | Jun, Seong Joon | Kim, Young-Taeg | Byun, Do-Seong | Hong, Sungmin
A total of 82 aerosol samples (PM10-2.5) were collected from June 18, 2015 to October 1, 2016 at the remote sea site, the Ieodo Ocean Research Station (IORS), in the East China Sea. Samples were analyzed for 10 elements (Al, Fe, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) as well as Pb isotopic composition to characterize temporal variations in elemental concentration levels, and to identify the potential source regions of atmospheric pollutants transported over the remote East China Sea. The results showed that the annual average element concentrations were lowest compared to those at different sites in East Asia, suggesting a very clean background area of IORS, with values ranging from 114 ng m⁻³ for Al to 0.045 ng m⁻³ for Tl. Concentrations averaged seasonally for all the elements revealed the highest levels occurring between winter and spring, and the lowest levels in summer. High enrichment factors (EF) of more than 100 for trace elements suggest that these elements originated mostly from anthropogenic sources. Coupling the Pb isotopic composition with a back trajectory analysis identified the potential source regions for each sample. Our approach identified China as a dominant contributor affecting atmospheric composition changes at IORS, the remote area of the East China Sea. As the largest anthropogenic emission source in East Asia, China contributed to almost 100% of the elemental concentration levels in winter and spring, ∼53% in summer and ∼63% in autumn. Because IORS's ambient air is sensitive to even slight changes in pollutant loading due to the significantly low pollution levels, long-term monitoring of air quality at IORS will provide invaluable information on the progress and efforts of atmospheric pollution management linked to emission controls in East Asian countries, especially China.
اظهر المزيد [+] اقل [-]Characterisation of particulate matter on airborne pollen grains النص الكامل
2015
Ribeiro, Helena | Guimarães, Fernanda | Duque, Laura | Noronha, Fernando | Abreu, Ilda
A characterization of the physical–chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles’ equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical–chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity.
اظهر المزيد [+] اقل [-]Soil dust as a potential bridge from biogenic volatile organic compounds to secondary organic aerosol in a rural environment النص الكامل
2022
He, Dong-Yi | Huang, Xiao Feng | Wei, Jing | Wei, Feng-Hua | Zhu, Bo | Cao, Li-Ming | He, Ling-Yan
The role of coarse particles has recently been proven to be underestimated in the atmosphere and can strongly influence clouds, ecosystems and climate. However, previous studies on atmospheric chemistry of volatile organic compounds (VOCs) have mostly focused on the products in fine particles, it remains less understood how coarse particles promote secondary organic aerosol (SOA) formation. In this study, we investigated water-soluble compounds of size-segregated aerosol samples (0.056 to >18 μm) collected at a coastal rural site in southern China during late summer and found that oxygenated organic matter was abundant in the coarse mode. Comprehensive source apportionment based on mass spectrum and ¹⁴C analysis indicated that different from fossil fuel SOA, biogenic SOA existed more in the coarse mode than in the fine mode. The SOA in the coarse mode showed a unique correlation with biogenic VOCs. ¹³C and elemental composition strongly suggested a pathway of heterogeneous reactions on coarse particles, which had an abundant low-acidic aqueous environment with soil dust to possibly initiate iron-catalytic oxidation reactions to form SOA. This potential pathway might complement understanding of both formation of biogenic SOA and sink of biogenic VOCs in global biogeochemical cycles, warrantying future relevant studies.
اظهر المزيد [+] اقل [-]Interannual and seasonal variabilities in soil NO fluxes from a rainfed maize field in the Northeast China النص الكامل
2021
Su, Chenxia | Zhu, Weixing | Kang, Ronghua | Quan, Zhi | Liu, Dongwei | Huang, Wentao | Shi, Yi | Chen, Xin | Fang, Yunting
Nitric oxide (NO) plays a critical role in atmospheric chemistry and also is a precursor of nitrate, which affects particle matter formation and nitrogen deposition. Agricultural soil has been recognized as a main source of atmospheric NO. However, quantifying the NO fluxes emitted from croplands remains a challenge and in situ long-term measurements of NO are still limited. In this study, we used an automated sampling system to measure NO fluxes with a high temporal resolution over two years (April 2017 to March 2019) from a rainfed maize field in the Northeast China. The cumulative annual NO emissions were 8.9 and 2.3 kg N ha⁻¹ in year 1 (April 2017 to March 2018) and year 2 (April 2018 to March 2019), respectively. These interannual differences were largely related to different weather conditions encountered. In year 1, a month-long drought before and after the seeding and fertilizing reduced plant N uptake and dramatically increased soil N concentration. The following moderate rainfalls promoted large amount of NO emissions, which remained high until late September. The NO fluxes in both years showed clearer seasonal patterns, being highest after fertilizer application in summer, and lowest in winter. The seasonal patterns of NO fluxes were mainly controlled by soil available N concentrations and soil temperatures. The contribution of NO fluxes during the spring freeze-thaw in both years was no more than 0.2% of the annual NO budget, indicating that the freeze-thaw effect on agricultural NO emissions was minimal. In addition, with high-resolution monitoring, we found that soil not only act as a NO source but also a sink. Long-term and high-resolution measurements help us better understand the diurnal, seasonal, and annual dynamics of NO emissions, build more accurate models and better estimate global NO budget and develop more effective policy responses to global climate change.
اظهر المزيد [+] اقل [-]Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India النص الكامل
2020
Singh, Vikas | Singh, Shweta | Biswal, Akash | Kesarkar, Amit P. | Mor, Suman | Ravindra, Khaiwal
Lockdown measures to contain COVID-19 pandemic has resulted in a considerable change in air pollution worldwide. We estimate the temporal and diurnal changes of the six criteria air pollutants, including particulate matter (PM₂.₅ and PM₁₀) and gaseous pollutants (NO₂, O₃, CO, and SO₂) during lockdown (25ᵗʰ March – 3ʳᵈ May 2020) across regions of India using the observations from 134 real-time monitoring sites of Central Pollution Control Board (CPCB). Significant reduction in PM₂.₅, PM₁₀, NO₂, and CO has been found in all the regions during the lockdown. SO₂ showed mixed behavior, with a slight increase at some sites but a comparatively significant decrease at other locations. O₃ also showed a mixed variation with a mild increase in IGP and a decrease in the South. The absolute decrease in PM₂.₅, PM₁₀, and NO₂ was observed during peak morning traffic hours (08–10 Hrs) and late evening (20–24 Hrs), but the percentage reduction is almost constant throughout the day. A significant decrease in day-time O₃ has been found over Indo Gangetic plain (IGP) and central India, whereas night-time O₃ has increased over IGP due to less O₃ loss. The most significant reduction (∼40–60%) was found in PM₂.₅ and PM₁₀. The highest decrease in PM was found for the north-west and IGP followed by South and central regions. A considerable reduction (∼30–70%) in NO₂ was found except for a few sites in the central region. A similar pattern was observed for CO having a ∼20–40% reduction. The reduction observed for PM₂.₅, PM₁₀, NO₂, and enhancement in O₃ was proportional to the population density. Delhi’s air quality has improved with a significant reduction in primary pollutants, however, an increase in O₃ was observed. The changes reported during the lockdown are combined effect of changes in the emissions, meteorology, and atmospheric chemistry that requires detailed investigations.
اظهر المزيد [+] اقل [-]Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone النص الكامل
2018
Xu, Wen | Shang, Bo | Xu, Yansen | Yuan, Xiangyang | Dore, Anthony J. | Zhao, Yuanhong | Massad, Raia-Silvia | Feng, Zhaozhong
Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone النص الكامل
2018
Xu, Wen | Shang, Bo | Xu, Yansen | Yuan, Xiangyang | Dore, Anthony J. | Zhao, Yuanhong | Massad, Raia-Silvia | Feng, Zhaozhong
The stomatal compensation point of ammonia (χs) is a key factor controlling plant-atmosphere NH3 exchange, which is dependent on the nitrogen (N) supply and varies among plant species. However, knowledge gaps remain concerning the effects of elevated atmospheric N deposition and ozone (O3) on χs for forest species, resulting in large uncertainties in the parameterizations of NH3 incorporated into atmospheric chemistry and transport models (CTMs). Here, we present leaf-scale measurements of χs for hybrid poplar clone ‘546’ (Populusdeltoides cv. 55/56 x P. deltoides cv. Imperial) growing in two N treatments (N0, no N added; N50, 50 kg N ha−1 yr−1 urea fertilizer added) and two O3 treatments (CF, charcoal-filtered air; E-O3, non-filtered air plus 40 ppb) for 105 days. Our results showed that χs was significantly reduced by E-O3 (41%) and elevated N (19%). The interaction of N and O3 was significant, and N can mitigate the negative effects of O3 on χs. Elevated O3 significantly reduced the light-saturated photosynthetic rate (Asat) and chlorophyll (Chl) content and significantly increased intercellular CO2 concentrations (Ci), but had no significant effect on stomatal conductance (gs). By contrast, elevated N did not significantly affect all measured photosynthetic parameters. Overall, χs was significantly and positively correlated with Asat, gs and Chl, whereas a significant and negative relationship was observed between χs and Ci. Our results suggest that O3-induced changes in Asat, Ci and Chl may affect χs. Our findings provide a scientific basis for optimizing parameterizations of χs in CTMs in response to environmental change factors (i.e., elevated N deposition and/or O3) in the future.
اظهر المزيد [+] اقل [-]Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone النص الكامل
2018
Xu, Wen | Shang, Bo | Xu, Yansen | Yuan, Xiangyang | Dore, Anthony J. | Zhao, Yuanhong | Massad, Raia Silvia | Feng, Zhaozhong | State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences ; Chinese Academy of Sciences [Beijing] (CAS) | College of Resources and Environment ; Shanxi Agricultural University [Jinzhong] | Bush Estate, Penicuik, Midlothian, EH26 0QB ; Centre for Ecology and Hydrology | Laboratory for Climate and Ocean-Atmosphere Sciences [Peking] ; Department of Atmospheric and Oceanic Sciences [Peking] ; Peking University [Beijing]-Peking University [Beijing] | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Université Paris-Saclay
The stomatal compensation point of ammonia (χs) is a key factor controlling plant-atmosphere NH3 exchange, which is dependent on the nitrogen (N) supply and varies among plant species. However, knowledge gaps remain concerning the effects of elevated atmospheric N deposition and ozone (O3) on χs for forest species, resulting in large uncertainties in the parameterizations of NH3 incorporated into atmospheric chemistry and transport models (CTMs). Here, we present leaf-scale measurements of χs for hybrid poplar clone ‘546’ (Populusdeltoides cv. 55/56 x P. deltoides cv. Imperial) growing in two N treatments (N0, no N added; N50, 50 kg N ha−1 yr−1 urea fertilizer added) and two O3 treatments (CF, charcoal-filtered air; E-O3, non-filtered air plus 40 ppb) for 105 days. Our results showed that χs was significantly reduced by E-O3 (41%) and elevated N (19%). The interaction of N and O3 was significant, and N can mitigate the negative effects of O3 on χs. Elevated O3 significantly reduced the light-saturated photosynthetic rate (Asat) and chlorophyll (Chl) content and significantly increased intercellular CO2 concentrations (Ci), but had no significant effect on stomatal conductance (gs). By contrast, elevated N did not significantly affect all measured photosynthetic parameters. Overall, χs was significantly and positively correlated with Asat, gs and Chl, whereas a significant and negative relationship was observed between χs and Ci. Our results suggest that O3-induced changes in Asat, Ci and Chl may affect χs. Our findings provide a scientific basis for optimizing parameterizations of χs in CTMs in response to environmental change factors (i.e., elevated N deposition and/or O3) in the future.
اظهر المزيد [+] اقل [-]Effects of elevated ozone concentration and nitrogen addition on ammonia stomatal compensation point in a poplar clone النص الكامل
2018
Xu, Wen | Shang, Bo | Xu, Yansen | Yuan, Xiangyang | Dore, Anthony, J | Zhao, Yuanhong | Massad, Raia-Silvia | Feng, Zhaozhong | State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences ; Chinese Academy of Sciences [Beijing] (CAS) | Chinese Academy of Sciences [Beijing] (CAS) | Chinese Academy of Sciences (CAS) | College of Resources and Environment ; Shanxi Agricultural University [Jinzhong] | Centre for Ecology & Hydrology - Bush Estate ; Natural Environment Research Council (NERC) | Laboratory for Climate and Ocean-Atmosphere Sciences [Peking] ; Department of Atmospheric and Oceanic Sciences [Peking] ; Peking University [Beijing]-Peking University [Beijing] | Peking University [Beijing] | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Both elevated O3 and fertilization can significantly reduced NH3 stomatal compensation point (χs) of poplar clone '546', and fertilization can mitigate the negative effects of O3 on χs.
اظهر المزيد [+] اقل [-]Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network النص الكامل
2018
Rauert, Cassandra | Shoieb, Mahiba | Schuster, Jasmin K. | Eng, Anita | Harner, Tom
Poly- and per-fluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) were monitored at 21 sites in the Global Atmospheric Passive Sampling (GAPS) Network. Atmospheric concentrations previously reported from 2009 were compared to concentrations measured at these sites in 2013 and 2015, to assess trends over 7 years of monitoring. Concentrations of the fluorotelomer alcohols (FTOHs) and fluorinated sulfonamides and sulfonamidoethanols (FOSAs and FOSEs) were stable at these sites from 2009 to 2015 with no significant difference (p > 0.05) in concentrations. Elevated concentrations of all the neutral PFAS were detected at the urban sites as compared to the polar/background sites. The perfluorosulfonic acids (PFSAs), meanwhile, saw a significant increase (p < 0.001) in concentrations from 2009 to 2015. The perfluorocarboxylic acids (PFCAs) had elevated concentrations in 2015, however, the difference was not statistically significant (p > 0.05). Concentrations of the PFSAs and the PFCAs were similar at all location types, showing the global reach of these persistent compounds. Concentrations of the cyclic VMS (cVMS) were at least an order of magnitude higher than the linear VMS (lVMS) and the PFAS. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) saw a weak significant increase in concentrations from 2009 to 2013 (p < 0.05), however, hexamethylcyclotrisiloxane (D3) had a strong significant decrease in concentrations from 2009 to 2015 (p < 0.01).
اظهر المزيد [+] اقل [-]