خيارات البحث
النتائج 1 - 10 من 44
Interannual variations, sources, and health impacts of the springtime ozone in Shanghai النص الكامل
2022
Li, Xiao-Bing | Fan, Guangqiang
In spring, ozone (O₃) pollution frequently occurrs in eastern China, but key drivers remain uncertain. In this study, interannual variations in springtime ozone in Shanghai, China, from 2013 to 2021, were investigated to assess the health impacts and the effectiveness of recent air pollution control measures. A combination of ground-level measurements of regulated air pollutants, lidar observations, and backward trajectories of air masses was used to identify the key drivers for enhancing springtime O₃. The results show that external imports of O₃ driven by atmospheric circulation are notable sources of springtime surface O₃. For example, the downward transport from the free troposphere could contribute to over 50% of surface O₃ in the morning. The surface O₃ mixing ratios in spring exhibited an upward trend of 0.93 ppb yr⁻¹ (p < 0.05) from 2013 to 2021. The change in meteorological variables, particularly the increase in air temperature, could explain nearly 87% of the springtime O₃ upward trend. The change in anthropogenic emissions of precursors only contributed to a small fraction (<13%) of the increase in springtime O₃. The cumulative exposure of urban residents to O₃ in spring also exhibited a significant upward trend (111 ppb yr⁻¹, p < 0.05). With the rapid increase in surface O₃, premature respiratory mortality attributable to O₃ exposure has fluctuated at approximately 2933 deaths per year since 2016, even though the total deaths from respiratory diseases have significantly declined. Long-term exposure to high O₃ concentrations is a significant contributor to premature respiratory mortality.
اظهر المزيد [+] اقل [-]Black carbon deposited in Hariqin Glacier of the Central Tibetan Plateau record changes in the emission from Eurasia النص الكامل
2021
Wang, Mo. | Xu, Baiqing | Wang, Hailong | Zhang, Rudong | Yang, Yang | Gao, Shaopeng | Tang, Xiangxiang | Wang, Ninglian
Black carbon (BC), by the combustion of fossil fuels and biomass, has profound effects on climate change and glacier retreat in industrial eras. In the present study, we report refractory BC (rBC) in an ice core spanning 1850–2014, retrieved from the Hariqin Glacier of the Tanggula Mountains in the central Tibetan Plateau, measured using a single particle soot photometer (SP2). The rBC concentration shows a three-fold increase since the 1950s. The mean rBC concentration was 0.71 ± 0.52 ng mL⁻¹ during 1850s–1940s and 2.11 ± 1.60 ng mL⁻¹ during 1950s–2010s. The substantial increase in rBC since the 1950s is consistent with rBC ice core records from the Tibetan Plateau and Eastern Europe. According to the predominant atmospheric circulation patterns over the glacier and timing of changes in regional emissions, the post-1950 amplification of rBC concentration in the central Tibetan Plateau most likely reflects increases in emissions in Eastern Europe, former USSR, the Middle East, and South Asia. Despite the low-level background rBC concentrations in the ice cores from the Tibetan Plateau, the present study highlights a remarkable increase in anthropogenic BC emissions in recent decades and the consequent influence on glaciers in the Tibetan Plateau.
اظهر المزيد [+] اقل [-]Natural aeolian dust particles have no substantial effect on atmospheric polycyclic aromatic hydrocarbons (PAHs): A laboratory study based on naphthalene النص الكامل
2020
Natural aeolian dust (AD) particles are potential carriers of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. The heterogeneous interaction between them may lead to worsened air quality and enhanced cytotoxicity and carcinogenicity of ambient particulates in downwind areas, and this topic requires in-depth exploration. In this study, AD samples were collected from four Asian dust sources, and their physical properties and compositions were determined, showing great regional differences. The physical and chemical interactions of different AD particles with naphthalene (Nap; model PAH) were observed in aqueous systems. The results showed that AD particles from the Loess Plateau had weak adsorption to Nap, which was fitted by the Langmuir isotherm. There was no obvious adsorption to Nap found for the other three AD samples. This difference seemed to depend mainly on the specific surface area and/or the total pore volume. In addition, the Nap in the aqueous solution did not undergo chemical reactions under dark conditions and longwave ultraviolet (UV) radiation but degraded under shortwave UV radiation, and 2-formylcinnamaldehyde and 1,4-naphthoquinone were the first-generated products. The degradation of Nap in the aqueous solution was probably initiated by photoionization, and the reaction rate constant (between 1.44 × 10⁻⁴ min⁻¹ and 8.55 × 10⁻⁴ min⁻¹) was much lower than that of Nap with hydroxyl radicals. Instead of inducing or promoting the chemical change in Nap, the AD particles slowed photodegradation due to the extinction of radiation. Therefore, it is inferred that natural AD particles have no substantial effect on the transportation and transformation of PAHs in the atmosphere.
اظهر المزيد [+] اقل [-]Atmospheric dispersion of methane emissions from sugarcane burning in Mexico النص الكامل
2019
Flores-Jiménez, David E. | Carbajal, Noel | Algara Siller, Marcos | Aguilar Rivera, Noé | Álvarez-Fuentes, Gregorio | Ávila-Galarza, Alfredo | García, Agustín R.
Methane is a potent greenhouse gas whose atmospheric dispersion may have different implications at distinct scales. One significant contributor to methane emissions is sugarcane farming in tropical areas like in Mexico, which has the sixth highest production level in the world. A consequence of the industrial use of this resource is that sugarcane preharvest burning emits large quantities of methane and other pollutants. The objective of this research is to estimate the methane emissions by sugarcane burning and to analyze their atmospheric dispersion under the influence of meteorological parameters, according to different concentration scenarios generated during a period. The methane emissions were investigated using the methodology of Seiler and Crutzen, based on the stage production during the harvest periods of 2011/2012, 2012/2013 and 2013/2014. Average of total emissions (1.4 × 103 Mg) at the national level was comparable in magnitude to those of other relevant sugarcane-producing countries such as India and Brazil. Satellite images and statistical methods were used to validate the spatial distribution of methane, which was obtained with the WRF model. The results show a dominant wind circulation pattern toward the east in the San Luis Potosi area, to the west in Jalisco, and the north in Tabasco. In the first two areas, wind convergence at a certain height causes a downward flow, preventing methane dispersion. The concentrations in these areas varied from 9.22 × 10−5 to 1.22 × 102 ppmv and 32 × 10−5 to 2.36 × 102 ppmv, respectively. Wind conditions in Tabasco contributed to high dispersion and low concentrations of methane, varying from 8.74 × 105 to 0.33 × 102 ppmv. Methane is a potent greenhouse gas for which it is essential to study and understand their dispersion at different geographic locations and atmospheric conditions.
اظهر المزيد [+] اقل [-]Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records النص الكامل
2010
Wang, Xiaoping | Gong, Ping | Zhang, Qianggong | Yao, Tandong
How do climate fluctuations affect DDT and hexachlorocyclohexane (HCH) distribution in the global scale? In this study, the interactions between climate variations and depositions of DDT and HCH in ice cores from Mt. Everest (the Tibetan Plateau), Mt. Muztagata (the eastern Pamirs) and the Rocky Mountains were investigated. All data regarding DDT/HCH deposition were obtained from the published results. Concentrations of DDT and HCH in an ice core from Mt. Everest were associated with the El Nino-Southern Oscillation. Concentrations of DDT in an ice core from Mt. Muztagata were significantly correlated with the Siberia High pattern. Concentrations of HCH in an ice core from Snow Dome of the Rocky Mountains responded to the North Atlantic Oscillation. These associations suggested that there are some linkages between climate variations and the global distribution of persistent organic pollutants. Our study approves the potential contribution of ice core records of POPs to transport mechanisms of POPs.
اظهر المزيد [+] اقل [-]Origin of polluted air masses in the Alps. An overview and first results for MONARPOP النص الكامل
2009
Kaiser, August
The contribution of ZAMG to MONAROP consists of special weather forecasts to control the SOCs sampling procedure and of the analysis of the specific transport processes for SOCs, which is still in progress. In this paper, air pollutant transport into the Alps is demonstrated by examples of inorganic pollutants: Measurements of NOx and ozone provide evidence for air pollutant transport by local wind systems (valley and slope winds), especially at low elevated sites of the Alps. In addition, trajectory analyses for the high elevation sites demonstrate the importance of large scale synoptic air pollutant transport. The effects of these transport processes with different spatial and temporal scales are governed by the physical and chemical properties of the particular pollutant. First results for the high alpine MONARPOP stations show that air masses from east Europe influence mostly Sonnblick (Austria), whereas the influence of the Po basin is strongest at Weissfluhjoch (Switzerland). Effects of meteorological transport processes on air pollution in the Alps are demonstrated by examples of inorganic pollutants and first conclusions for SOCs are drawn.
اظهر المزيد [+] اقل [-]Spatial distribution and seasonal variations of atmospheric organophosphate esters (OPEs) in Tianjin, China based on gridded field observations النص الكامل
2020
Liang, Yuanyuan | Wang, Huan | Yang, Qiaoyun | Cao, Shengyu | Yan, Caiqing | Zhang, Liwen | Tang, Naijun
The atmospheric concentrations of 14 organophosphate esters (OPEs) were monitored by passive air sampling at 33 sites to determine their spatial distributions, and seasonal variations (summer and winter) in Tianjin, North China. The total concentrations of the OPEs (∑₉OPEs) in the summer ranged from 0.08 to 1113 ng/sample with a median of 98.4 ng/sample, which was non-statistically different from the concentrations obtained in the winter (which ranged from 1.93 to 548 ng/sample with a median of 46.2 ng/sample). Among the observed OPEs, the concentrations of TnBP and TCiPP were statistically higher in the summer compared with the winter (p < 0.05). For grouped OPEs, only a significantly higher level of chlorinated OPEs was found in summer than that in winter. In the winter, spatial differences were found to be significantly different between the concentrations of TnBP, TiBP, TCEP, and TEHP in the suburban and rural areas (p < 0.05). Considering the possible point-sources, in the summer, the concentrations of TDCPP, TCiPP, DPEHP, TEHP, and the total concentration of TCPs (denoted as ∑₃TCP, comprised of the concentrations of TCP, TmCP, and ToCP) in an electronic-waste (e-waste) dismantling area were higher than those obtained at the other sampling sites. ∑₉OPEs at the e-waste site and another site located near a manufacturing plant of organophosphate flame retardants (OFRs) were both higher than the median concentrations obtained at the other sampling sites, and TCiPP was the most abundant pollutant. In the winter, the concentrations of ∑₉OPEs at the e-waste site were still higher than their median concentrations at the other sites. Because OPEs are used in aircraft lubricating oils and hydraulic fluids, an airport was thought to be another important source of TiBP and TPhP in the present study. Therefore, the e-waste site, airport, and OFR manufacturing plant may be the major sources of OPEs in the environment.
اظهر المزيد [+] اقل [-]An increase of ammonia emissions from terrestrial ecosystems on the Tibetan Plateau since 1980 deduced from ice core record النص الكامل
2020
Zou, Xiang | Hou, Shugui | Zhang, Wangbin | Liu, Ke | Yu, Jinhai | Pang, Hongxi | Liu, Yaping
Ammonia (NH₃) emissions could have significant impacts on both ecosystems and human health. Ice cores from the Tibetan Plateau contain information about past ammonium (NH₄⁺) deposition, which could yield important insights into historical NH₃ emissions in the surrounding source regions as well as long-distance NH₄⁺ aerosol transport via atmospheric circulation. In this paper, we present a high-resolution atmospheric NH₄⁺ deposition record for the period, 1951–2008, reconstructed from the Zangser Kangri (ZK) ice core in the northern Tibetan Plateau. An empirical orthogonal function (EOF) analysis of major soluble ions (NH₄⁺, NO₃⁻, SO₄²⁻, Cl⁻, Na⁺, K⁺, Mg²⁺ and Ca²⁺) reveals that EOF 1 has significant loadings of all ions, therefore representing common transport pathways, while EOF 2 is only significantly loaded by NH₄⁺ (0.86) and NO₃⁻ (0.35), suggesting a unique signal possibly representing emissions from the surrounding terrestrial ecosystems on the Tibetan Plateau. Backward trajectory analysis indicates that the air masses over the ZK ice core drilling site primarily come from the northwestern Indian Peninsula. NH₃ emissions from agricultural activities in this area likely contribute to the NH₄⁺ deposition of the ZK ice core via the Indian monsoon. Correlations between EOF 2 time series and temperature, normalized difference vegetation index (NDVI) suggest that increasing temperature and vegetation after 1980 likely promoted NH₃ emissions from terrestrial ecosystems. Our results provide a reliable and valuable assessment of NH₄⁺ deposition from human activities and terrestrial ecosystems in the ZK ice core, and help in understanding air pollution over the past few decades in the northern Tibetan Plateau.
اظهر المزيد [+] اقل [-]Methane emissions from oil and gas platforms in the Bohai Sea, China النص الكامل
2020
Zang, Kunpeng | Zhang, Gen | Wang, Juying
Although oil and gas explorations contribute to atmospheric methane (CH₄) emissions, their impact and influence along the shelf seas of China remain poorly understood. From 2012 to 2017, we conducted four ship-based surveys of CH₄ in the seawater column and boundary layer of the Bohai Sea, China, and further measured CO₂ and several meteorological parameters. The average observed CH₄ mixing ratios in the boundary layer and its concentrations in seawater column were 1950 ± 46 ppb in November 2012 (dissolved CH₄ was not observed in this survey), 2222 ± 109 ppb and 13.0 ± 5.9 nmol/L in August 2014, 2014 ± 20 ppb and 5.4 ± 1.4 nmol/L in February 2017, and 1958 ± 25 ppb and 5.3 ± 3.8 nmol/L in May 2017, respectively. The results demonstrated that the CH₄ emissions from the oil and gas platforms accounted for approximately 72.5 ± 27.0% of the increase in the background atmospheric CH₄ in the local area. The remaining emissions were attributed to land–sea air mass transportation. Conversely, the influence of the air–sea exchange was negligible, measuring within the 10⁻³ ppb range. For carbon balance calibration, the mean flaring efficiency of the oil-associated gas based on the enhancement of CO₂ (ΔCO₂) and enhancement sum of CO₂ and CH₄ (ΔCO₂ + ΔCH₄) was 98.5 ± 0.5%. Furthermore, the CH₄ emission rate from the oil and gas platforms was 0.026 ± 0.017 Tg/year, which was approximately 7.2 times greater than the sea-to-air CH₄ flux over the entire Bohai Sea area. Thus, oil and gas platforms must be recognized as important artificial hotspot sources of atmospheric CH₄ in the Bohai Sea.
اظهر المزيد [+] اقل [-]Investigation of distribution, transportation, and impact factors of atmospheric black carbon in the Arctic region based on a regional climate-chemistry model النص الكامل
2020
Chen, Xintong | Kang, Shichang | Yang, Junhua
Black carbon (BC) as the main component of pollutants in the Arctic plays an important role on regional climate change. In this study, we applied the regional climate-chemistry model, WRF-Chem, to investigate the spatial distribution, transportation, and impact factors of BC in the Arctic. Compared with reanalysis data and observations, the WRF-Chem performed well in terms of the seasonal variations of meteorological parameters and BC concentrations, indicating the applicability of this model on Arctic BC simulation works. Our results showed that the BC concentrations in the Arctic had an obviously seasonalvariation pattern. Surface BC concentrations peaked during winter and spring seasons, while the minimum occurred during summer and autumn seasons. For the vertical distribution, BC aerosols mainly concentrated in the Arctic lower troposphere, and most of BC distributed near the surface during winter and spring seasons and in the higher altitude during other seasons. The seasonality of BC was associated with the seasonal change of meteorological field. During winter, the significant northward airflow prevailing in northern Eurasia caused the transport of accumulated pollutants from this region into the Arctic. The similar but weakened northward airflow pattern and the anticyclone activity during spring can allow pollutants to be transported to the Arctic lower troposphere. Moreover, the more stable atmosphere during winter and spring seasons made BC accumulated mainly near the surface. During summer and autumn seasons, the less stable boundary layer and the cyclone activity in the Arctic facilitated the diffusion of pollutants into the higher altitude. Meanwhile, the higher relative humidity can promote the wet removal process and lead to the relatively lower BC concentrations near the surface. Compared with the seasonal change of emission, our analysis showed that the seasonal variation of meteorological field was the main contributor for the seasonality of BC in the Arctic.
اظهر المزيد [+] اقل [-]