خيارات البحث
النتائج 1 - 10 من 41
Consequences of elevated CO2 and O3 on birch canopy structure
2002
Kull, O. (University of Tartu, Tartu (Estonia). Institute of Botany and Ecology) | Tulva, I. | Vapaavuori, E.
We studied elevated CO2 and ozone effects in single and in combination on crown structure of two Betula pendula clones. Shoot ramification, shoot length, number of metamers, leaves and buds were measured at four heights in every tree. Chamber effect was substantial on sylleptic branching and on shoot length and ramification. However these responses differed between the clones. Ozone treatment affected shoot length and caused slight decrease in shoot ramification. Elevated CO2 affected appearance of long shoots in complex manner, but in lower crown positions CO2 caused increased number of long shoots in both clones
اظهر المزيد [+] اقل [-]Effect of increasing ozone and carbon dioxide on photosynthetic and related biochemical properties of two silver birch clones during three years of exposure
2002
Riikonen, J. (Finnish Forest Research Institute, Suonenjoki (Finland). Suonenjoki Research Station) | Holopainen, T. | Oksanen, E. | Vapaavuori, E.
Under elevated CO2 photosynthesis was 15-50% higher than in chamber controls depending on the weather conditions of the growing seasons. When measured at 360 ppm CO2 both elevated CO2 and elevated CO2 + O3 treatments decreased net photosynthesis, stomatal conductance and also transpiration, indicating downregulation of photosynthesis at elevated CO2
اظهر المزيد [+] اقل [-]Physiological ozone responses of birch (Betula pendula Roth) differ between soil-growing trees in a multi-year exposure and potted saplings in a single-season exposure
2002
Oksanen, E. (University of Kuopio, Kuopio (Finland). Department of Ecology and Environemntal Science)
Increased ozone sensitivity of larger soil-growing trees with growth in the multi-year exposure was a result of several interactive senescence-related physiological factors: lower net photosynthesis to stomatal conductance ratio at the end of the growing season promoted high ozone uptake and low photosynthetic carbon gain, leading to onset of visible injuries and impaired bud formation. This was expected to affect negatively the early growth of the next year foliage, This clone showed a major change in allocation pattern during the early ontogeny at the expense of foliage growth towards the stem height increase
اظهر المزيد [+] اقل [-]Effects of elevated CO2 and O3 on silver birch rhizosphere and leaf litter decomposition
2002
Kasurinen, A. (University of Kuopio, Kuopio (Finland). Department of Ecology and Environmental Science) | Vapaavuori, E. | Holopainen, J. K. | Holopainen, T.
There is still limited amount of information about the long-term and interactive effects of increased CO2 and O3 levels on larger forest trees growing under natural or semi-natural conditions. Elevated CO2 and O3 might affect the quality and quantity of leaf litter produced and thus change litter decomposition rates and nutrient cycling in the forest ecosystems severely. In this long-term field experiment we studied the effects of realistically increased CO2 and O3 levels on fine root and mycorrhiza growth in ozone-tolerant and ozone-sensitive silver birch clones by root ingrowth core method. We measured rhizosphere soil CO2 efflux plus assessed the total fungal biomass of fine roots and soil by ergosterol analysis
اظهر المزيد [+] اقل [-]BVOC responses to realistic nitrogen fertilization and ozone exposure in silver birch النص الكامل
2016
Carriero, G. | Brunetti, C. | Fares, S. | Hayes, F. | Hoshika, Y. | Mills, G. | Tattini, M. | Paoletti, E.
Emission of BVOC (Biogenic Volatile Organic Compounds) from plant leaves in response to ozone exposure (O3) and nitrogen (N) fertilization is poorly understood. For the first time, BVOC emissions were explored in a forest tree species (silver birch, Betula pendula) exposed for two years to realistic levels of O3 (35, 48 and 69 ppb as daylight average) and N (10, 30 and 70 kg ha−1 yr−1, applied weekly to the soil as ammonium nitrate). The main BVOCs emitted were: α-pinene, β-pinene, limonene, ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and hexanal. Ozone exposure increased BVOC emission and reduced total leaf area. The effect on emission was stronger when a short-term O3 metric (concentrations at the time of sampling) rather than a long-term one (AOT40) was used. The effect of O3 on total leaf area was not able to compensate for the stimulation of emission, so that responses to O3 at leaf and whole-plant level were similar. Nitrogen fertilization increased total leaf area, decreased α-pinene and β-pinene emission, and increased ocimene, hexanal and DMNT emission. The increase of leaf area changed the significance of the emission response to N fertilization for most compounds. Nitrogen fertilization mitigated the effects of O3 exposure on total leaf area, while the combined effects of O3 exposure and N fertilization on BVOC emission were additive and not synergistic. In conclusion, O3 exposure and N fertilization have the potential to affect global BVOC via direct effects on plant emission rates and changes in leaf area.
اظهر المزيد [+] اقل [-]Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees النص الكامل
2013
Räsänen, Janne V. | Holopainen, Toini | Joutsensaari, Jorma | Ndam, Collins | Pasanen, Pertti | Rinnan, Åsmund | Kivimäenpää, Minna
Trees can improve air quality by capturing particles in their foliage. We determined the particle capture efficiencies of coniferous Pinus sylvestris and three broadleaved species: Betula pendula, Betula pubescens and Tilia vulgaris in a wind tunnel using NaCl particles. The importance of leaf surface structure, physiology and moderate soil drought on the particle capture efficiencies of the trees were determined. The results confirm earlier findings of more efficient particle capture by conifers compared to broadleaved plants. The particle capture efficiency of P. sylvestris (0.21%) was significantly higher than those of B. pubescens, T. vulgaris and B. pendula (0.083%, 0.047%, 0.043%, respectively). The small leaf size of P. sylvestris was the major characteristic that increased particle capture. Among the broadleaved species, low leaf wettability, low stomatal density and leaf hairiness increased particle capture. Moderate soil drought tended to increase particle capture efficiency of P. sylvestris.
اظهر المزيد [+] اقل [-]Comparison of different stomatal conductance algorithms for ozone flux modelling النص الكامل
2007
Büker, P. | Emberson, L.D. | Ashmore, M.R. | Cambridge, H.M. | Jacobs, C.M.J. | Massman, W.J. | Müller, J. | Nikolov, N. | Novak, K. | Oksanen, E.
A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221-224.] algorithm for calculating stomatal conductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An).
اظهر المزيد [+] اقل [-]Response of subarctic tree seedlings to solar UV radiation
2002
Turunen, M. (University of Lapland, Rovaniemi (Finland). Arctic Centre) | Suttinen, M. L. | Derome, K. | Norokorpi, Y. | Lakkala, K.
The response of Betula pubescens Ehr., B. pendula Roth and two provenances of Pinus sylvestris L. to solar ultraviolet radiation were investigated in a UV exclusion field experiment during the 1997-1999 growing seasons in Finnish Lapland. The seed-grown seedlings were grown under UV-B exclusion and UV-B/UV-A exclusion as compared to control treatment and ambient plants. The only significant impacts of UV exclusion were found in P. sylvestris provenance Enontekio. Longer-term field studies are needed to detect the cumulative characteristics of the UV responses
اظهر المزيد [+] اقل [-]Assessment of the ability of roadside vegetation to remove particulate matter from the urban air النص الكامل
2021
Kończak, B. | Cempa, M. | Pierzchała, Ł | Deska, M.
The development of urbanised areas together with the growing transport infrastructure and traffic volume are the main cause of air quality deterioration due to the increasing concentrations of particulate matter. Dust pollution is a threat to human health. It can cause the development of lung, larynx or circulatory system cancer. Due to the ability to accumulate dust particles on the leaf surface, the contribution of trees in the process of phytoremediation of air pollution has started to be appreciated. An analysis of the elemental composition of particulate matter (PM) stored on the leaves surface was also carried out, which showed high average concentration of: C > O > Si > Fe (above 8wt.%). It was also observed single particles with a high concentration of heavy metals: Ti, Mn, Ba, Zn, Cr, Pb, Sn, Ni and REE (rare earth elements). The major origin of PM are vehicular emissions, soil and re-suspended road dust. This paper presents also a comparison of selected tree, shrub and vine species differing in their ability to accumulate particulate matter. It was experimentally determined the average leaf surface of individual plant species and established the amount of particulate matter with aerodynamic diameter between 10 and 100 μm, 2.5 and 10 μm, and 0.2 and 2.5 μm deposited on the leaf surface and in waxes.Some species of vines (Parthenocissus quinquefolia), shrubs (Forsythia x intermediata) and coniferous trees, such as Betula pendula ‘Youngii’, Quercus rubra, Cratageus monogyna, Acer pseduoplatanus, Tilia cordata Mill. or Platanus orientalis turned out to be the most efficient in the process of phylloremediation.
اظهر المزيد [+] اقل [-]Effect of air pollutant NO2 on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity النص الكامل
2014
Cuinica, Lázaro G. | Abreu, Ilda | Esteves da Silva, Joaquim
Pollen of Betula pendula, Ostrya carpinifolia and Carpinus betulus was exposed in vitro to two levels of NO2 (about 0.034 and 0.067 ppm) – both below current atmospheric hour-limit value acceptable for human health protection in Europe (0.11 ppm for NO2). Experiments were performed under artificial solar light with temperature and relative humidity continuously monitored. The viability, germination and total soluble proteins of all the pollen samples exposed to NO2 decreased significantly when compared with the non-exposed. The polypeptide profiles of all the pollen samples showed bands between 15 and 70 kDa and the exposure to NO2 did not produce any detectable changes in these profiles. However, the immunodetection assays indicated higher IgE recognition by patient sera sensitized to the pollen extracts from all exposed samples in comparison to the non-exposed samples. The common reactive bands to the three pollen samples correspond to 58 and 17 kDa proteins.
اظهر المزيد [+] اقل [-]