خيارات البحث
النتائج 1 - 10 من 372
Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning
2020
Hu, Bifeng | Xue, Jie | Zhou, Yin | Shao, Shuai | Fu, Zhiyi | Li, Yan | Chen, Songchao | Qi, Lin | Shi, Zhou | Unité de Science du Sol (Orléans) (URSols) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences ; Zhejiang University [Hangzhou, China] | Institute of Land Science and Property, School of Public Affairs ; Zhejiang University [Hangzhou, China] | School of Earth Sciences [Hangzhou] ; Zhejiang University [Hangzhou, China] | InfoSol (InfoSol) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ningbo Planting Management Station ; Ningbo University (NBU)
The prediction and identification of the factors controlling heavy metal transfer in soil-crop ecosystems are of critical importance. In this study, random forest (RF), gradient boosted machine (GBM), and generalised linear (GLM) models were compared after being used to model and identify prior factors that affect the transfer of heavy metals (HMs) in soil-crop systems in the Yangtze River Delta, China, based on 13 covariates with 1822 pairs of soil-crop samples. The mean bioaccumulation factors (BAFs) for all crops followed the order Cd > Zn > As > Cu > Ni > Hg > Cr > Pb. The RF model showed the best prediction ability for the BAFs of HMs in soil-crop ecosystems, followed by GBM and GLM. The R2 values of the RF models for the BAFs of Zn, Cu, Cr, Ni, Hg, Cd, As, and Pb were 0.84, 0.66, 0.59, 0.58, 0.58, 0.51, 0.30, and 0.17, respectively. The primary controlling factor in soil-to-crop transfer of all HMs under study was plant type, followed by soil heavy metal content and soil organic materials. The model used herein could be used to assist the prediction of heavy metal contents in crops based on heavy metal contents in soil and other covariates, and can significantly reduce the cost, labour, and time requirements involved with laboratory analysis. It can also be used to quantify the importance of variables and identify potential control factors in heavy metal bioaccumulation in soil-crop ecosystems.
اظهر المزيد [+] اقل [-]Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions
2022
Rokonuzzaman, MD. | Li, W.C. | Wu, C. | Ye, Z.H.
Rice and vegetables cultivated in naturally arsenic (As) endemic areas are the substantial source of As body loading for persons using safe drinking water. However, tracing As intake, particularly from rice and vegetables by biomarker analysis, has been poorly addressed. This field investigation was conducted to trace the As transfer pathway and measure health risk associated with consuming As enriched rice and vegetables. Purposively selected 100 farmers from five sub-districts of Chandpur, Bangladesh fulfilling specific requirements constituted the subjects of this study. A total of 100 Irrigation water, soils, rice, and vegetable samples were collected from those farmers’ who donated scalp hair. Socio-demographic and food consumption data were collected face to face through questionnaire administration. The mean As level in irrigation water, soils, rice, vegetables, and scalp hairs exceeded the acceptable limit, while As content was significant at 0.1%, 5%, 0.1%, 1%, and 0.1% probability levels, respectively, in all five locations. Arsenic in scalp hair is significantly (p ≤ 0.01) correlated with that in rice and vegetables. The bioconcentration factor (BCF) for rice and vegetables is less than one and significant at a 1% probability level. The average daily intake (ADI) is higher than the RfD limit for As. Both grains and vegetables have an HQ (hazard quotient) > 1. Maximum incremental lifetime cancer risk (ILCR) showed 2.8 per 100 people and 1.6 per 1000 people are at considerable and threshold risk, respectively. However, proteinaceous and nutritious food consumption might have kept the participants asymptomatic. The PCA analysis showed that the first principle component (PC1) explains 91.1% of the total variance dominated by As in irrigation water, grain, and vegetables. The dendrogram shows greater variations in similarity in rice and vegetables As, while the latter has been found to contribute more to human body loading compared to grain As.
اظهر المزيد [+] اقل [-]Microlophus atacamensis as a biomonitor of coastal contamination in the Atacama Desert, Chile: An evaluation through a non-lethal technique
2021
In this report, we investigated the accumulation of heavy metals in the lizard Microlophus atacamensis, in three coastal areas of the Atacama Desert, northern Chile. We captured reptiles in a non-intervened area (Parque Nacional Pan de Azúcar, PAZ), an area of mining impact (Caleta Palitos, PAL) and an active industrial zone (Puerto de Caldera, CAL). Our methods included a non-lethal sampling of reptiles’ tails obtained by autotomy and a few sacrificed animals to perform a stomach contents analysis. The concentrations of lead, copper, nickel, zinc and cadmium were measured by atomic absorption spectrophotometry in both soil and prey and compared to those recorded in the lizards’ tails. Data obtained from lizard tails captured in PAL showed significantly high concentrations of Pb, Cu, Ni, and Zn compared to the other two sites PAZ and CAL. We did not find statistically significant differences among PAZ, PAL and CAL soils, probably due to the similar geological composition of the sites. However, the regional background values for Pb indicate contamination or at least metal enrichment in soils of the three sites, for Cu the global background values indicate contamination for the three sites, and for Cd both the regional and global backgroud values show high values. The analysis of the stomach content showed differences in the food sources of the lizards among the sites studied. The concentration of heavy metal in lizard tissues versus prey delivered values of the Trophic Transfer Factor higher than one (1), suggesting that food may be a primary source of metals in the tissues of M. atacamensis. Calculations of the Bioaccumulation Factor (BAF) and the Ecological Risk (IR) resulted in values higher than one (1) indicating the relevance of this process in the sites studied. In this article, we report relationships between environmental contaminants, mainly putative preys, and concentrations found in lizard tails, which is more substantial in areas with historical heavy metal contamination such as PAL where the non-lethal technique developed in this research suggests a process of metal bioaccumulation in M. atacamensis.
اظهر المزيد [+] اقل [-]Seasonal distribution pattern and bioaccumulation of Polycyclic aromatic hydrocarbons (PAHs) in four bioindicator coastal fishes of Argentina
2021
Recabarren-Villalón, Tatiana | Ronda, Ana C. | Oliva, Ana L. | Cazorla, Andrea Lopez | Marcovecchio, Jorge E. | Arias, Andrés H.
Polycyclic aromatic hydrocarbons (PAHs) are pollutants of global concern in coastal environments. They have a wide range of biological toxicity and due to their inherent properties, can easily bioaccumulate in organisms and concentrate in the environment. This work evaluated, in an integrated way, the seasonal PAH distribution patterns in sediments and four bioindicators fish species in a highly impacted estuary of Argentina; besides, their bioaccumulation patterns were assessed for the first time as indicator of ecological risk. The highest PAH levels in fish were found for Ramnogaster arcuata with an average of 64 ng g⁻¹ w.w., followed by Micropogonias furnieri (45 ng g⁻¹ w.w.), Cynoscion guatucupa (28 ng g⁻¹ w.w.), and Mustelus schmitti (16 ng g⁻¹ w.w.). Fish presented the highest PAH levels in fall with a predominance of petrogenic PAHs in colder seasons and pyrolytic PAHs in warmer seasons. Sediments presented an average of 233 ng g⁻¹ d.w. with the same seasonal composition pattern of the fish tissues. Additionally, the data suggested that the main source of PAHs are wastewater discharges. The bioaccumulation factor (BAF) of PAHs in the tested fishes were found to range from 0.3 to 8. The highest values were observed during fall and winter, while bioaccumulation did not occur in moist spring and summer samples, which would suggest a high biotransformation process during these seasons. Results suggested that class III of juvenile C. guatucupa and M. furnieri, and adults R. arcuata are more sensitive bioindicators of chronic PAH contamination and that their bioaccumulation is independent of the compound hydrophobicity; this could have a positively influence on the criteria used for biological monitoring programs along the Atlantic coast. In addition, the presented BAF data on the target species will serve as a useful pollution indicator for South Atlantic coastal fish.
اظهر المزيد [+] اقل [-]In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius)
2021
Yan, Zhenfei | Feng, Chenglian | Jin, Xiaowei | Liu, Daqing | Hong, Yajun | Qiao, Yu | Bai, Yingchen | Moon, Hyo-Bang | Qadeer, Abdul | Wu, Fengchang
Cresyl diphenyl phosphate (CDP), as a kind of aryl substituted organophosphate esters (OPEs), is commonly used as emerging flame retardants and plasticizers detected in environmental media. Due to the accumulation of CDP in organisms, it is very important to discover the toxicological mechanism and metabolic process of CDP. Hence, liver microsomes of crucian carps (Carassius carassius) were prepared for in vitro metabolism kinetics assay to estimate metabolism rates of CDP. After 140 min incubation, the depletion of CDP accounted for 58.1%–77.1% (expect 0.5 and 2 μM) of the administrated concentrations. The depletion rates were best fitted to the Michaelis-Menten model (R² = 0.995), where maximum velocity (Vₘₐₓ) and Michaelis-Menten constant (Kₘ) were 12,700 ± 2120 pmol min⁻¹·mg⁻¹ protein and 1030 ± 212 μM, respectively. Moreover, the in vitro hepatic clearance (CLᵢₙₜ) of CDP was 12.3 μL min⁻¹·mg⁻¹ protein. Log Kₒw and bioconcentration factor (BCF) of aryl-OPEs were both higher than those of alkyl- and chlorinated-OPEs, indicating that CDP may easily accumulate in aquatic organisms. The results made clear that the metabolism rate of CDP was greater than those of other OPEs detected in liver microsomes in previous research. This paper was first of its kind to comprehensively investigate the in vitro metabolic kinetics of CDP in fish liver microsomes. The present study might provide useful information to understand the environmental fate and metabolic processes of these kinds of substances, and also provide a theoretical basis for the ecological risk assessment of emerging contaminants.
اظهر المزيد [+] اقل [-]Hazardous pollutants in the environment: Fish host-parasite interactions and bioaccumulation of polychlorinated biphenyls
2021
Brázová, Tímea | Miklisová, Dana | Barčák, Daniel | Uhrovič, Dalibor | Šalamún, Peter | Orosová, Martina | Oros, Mikuláš
The present paper reports on the interrelationships of fish, parasites and the bioaccumulation of hazardous organic compounds in the Zemplínska Šírava water reservoir in eastern Slovakia, which is heavily polluted with polychlorinated biphenyls (PCBs). The concentrations of these contaminants were measured in various fish matrices (dorsal and abdominal muscle tissues, hepatopancreas, intestine wall and adipose tissue) of the freshwater bream, Abramis brama (Cyprinidae), and in its intestinal parasite Caryophyllaeus laticeps (Cestoda), which was used for the first time as a model for a PCB bioaccumulation study. Regarding the fish, the highest concentrations of PCBs were found in the intestine, followed by hepatopancreas and muscle tissues. The amounts of PCBs were higher in abdominal muscles than in their dorsal parts. Concentrations of ∑PCBs above the limits set by European regulations were detected in both muscle parts in the fish, confirming the persistent unfavorable conditions in this locality and high risk for biota and humans. Based on bioconcentration factor values (BCFs), PCBs reached much higher levels in cestodes compared to bream matrices. Some significant differences in PCB amounts between infected and uninfected bream were determined. Fulton's condition factor (CF) significantly differed in infected and non-infected fish (p ˂ 0.05), with CF values surprisingly lower in fish free of parasites compared to parasitized fish, which suggests a “mutualistic” relationship between the parasite and its host.
اظهر المزيد [+] اقل [-]Predictive model for cadmium uptake by maize and rice grains on the basis of bioconcentration factor and the diffusive gradients in thin-films technique
2021
Chen, Rui | Cheng, Nuo | Ding, Guoyu | Ren, Fumin | Lv, Jungang | Shi, Rongguang
It is possible for heavy metals in soils to be adsorbed by crop roots and then accumulated in crops, which eventually causes great health risk when the crops are ingested by humans. Thus, it is valuable to understand the enrichment model of heavy metals in crops. Diffusive gradients in thin-films (DGT) technique, as an in-situ passive sampling method, can be used to evaluate the bioavailable heavy metals contents in soils. In this study, data of the bioavailable cadmium (Cd) in soils determined by DGT and Cd contents uptake in rice and maize grains in Tianjin, Zhejiang and Guangxi provinces of China were collected from previous references in Web of Science. By comparing bioconcentration factors, it was found that the heavy metal concentrations accumulated in rice and maize followed a general order roots > stems or leaves > grains. An accurate and robust model for the prediction of Cd content in maize and rice grains was established based on bioconcentration factor (BCF) and the bioavailable Cd content determined by DGT method, with R² 0.986 and root mean square error (RMSE) 0.128. This result suggests that the DGT method can be good tool for predicting heavy metals uptake in crops.
اظهر المزيد [+] اقل [-]Assessment of biopiles treatment on polluted soils by the use of Eisenia andrei bioassay
2021
Olivia, Lorente-Casalini | Minerva, García-Carmona | Rocío, Pastor-Jáuregui | Francisco José, Martín-Peinado
A long-term case of residual pollution is studied after 20 years since the largest mining accident in Spain (the Aznalcóllar spill) happened. This pollution is manifested through a surface zoning consisting of bare soils (B0), sparsely vegetated soils (B1), and densely vegetated and recovered soils (B2). A biopiles treatment with a mixture of contaminated soils (B0 and B1) with recovered soils (B2) at 50% (w/w), and vermicompost addition (50 tons ha-1) was evaluated. To assess the effectiveness of treatments, total, water-soluble, and bioavailable fractions of the most polluting elements in the zone (Cu, Zn, As, Pb, Cd, and Sb) was analyzed. To evaluate the potential risk of contamination for the ecosystem, a bioassay with earthworm Eisenia andrei was carried out. Twenty years after the accident, there are still soils where total As and Pb exceed the regulatory levels and water-soluble Zn and As exceed the toxicity guidelines. According to toxicity bioassay, weight variation and juvenile production of earthworms showed an improvement after biopiles treatment, with values that trend to be similar to those of recovered soils. The only bioaccumulated element in earthworms was Cd (BAF>1), both in polluted as in treated soils, which indicates the possible existence of exclusion mechanisms of the other pollutants by earthworms. The comparison between biopiles and polluted soils showed no significant differences for the bioaccumulation factor of trace elements, with the exception of Zn and Cu, which slightly increased after treatment. According to our results, biopiles treatment combined with vermicompost addition is a good technique for the recovery of residual contaminated areas, by the improvement of soil properties and the reduction of the potential toxicity; anyway, monitoring of soils and organisms is needed to prevent the increase of bioavailability of some potentially pollutant elements over time.
اظهر المزيد [+] اقل [-]Bioaccumulation, elimination and metabolism in earthworms and microbial indices responses after exposure to decabromodiphenyl ethane in a soil-earthworm-microbe system
2021
Jiang, Lingling | Ling, Siyuan | Fu, Mengru | Peng, Cheng | Zhang, Wei | Lin, Kuangfei | Zhou, Bingsheng
As a novel brominated flame retardant (NBFR), decabromodiphenyl ethane (DBDPE) has been poorly understood for the environmental fate and toxicity in terrestrial invertebrates. For the first time, the bioaccumulation, elimination, metabolism and detoxification of DBDPE in earthworms as well as its potential impacts on soil microbes were investigated. The results showed much higher DBDPE concentrations in casts than in earthworms. The bioaccumulation factor (BAF) and elimination rate constant (kₑ) values were 0.028–0.213 (gdw, worm/gdw, soil) and 0.323–0.452 (day⁻¹), respectively. The detoxifying enzymes (CYP450 and GST) could be induced by DBDPE within the range of exposure dosage, and the activities were significantly increased at 21 d (p < 0.05). The results were identified by GC-ECNI-MS, and it showed that at least eleven unknown peaks were separately observed in the earthworms, which were the biotransformation products of DBDPE in earthworms. Additionally, the damages, including skin shrinkage, setae impairment, and intercellular vacuolization, were clearly observed by SEM/TEM. Based on these data, DBDPE could accumulate in earthworms, yet, with low bioaccumulation ability. Moreover, DBDPE exposure resulted in minimal harmful impacts on microbial activities including microbial biomass C (MBC), Microbial basal respiration (MBR), Urease (US) activity and fluorescein diacetate hydrolase (FDA) activity (p < 0.05). Our findings would provide some essential information for interpreting the ecological risks of DBDPE in soil.
اظهر المزيد [+] اقل [-]Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen City, South China
2020
Hu, Yongxia | Sun, Yuxin | Pei, Nancai | Zhang, Zaiwang | Li, Huawei | Wang, Weiwei | Xie, Jinli | Xu, Xiangrong | Luo, Xiaojun | Mai, Bixian
Halogenated flame retardants (HFRs) are ubiquitous in the environment, but little information is available about the bioaccumulation of HFRs in mangrove plants. In this study, three mangrove plant species were collected from Futian National Nature Reserve of Shenzhen City, South China to investigate the bioaccumulation of polybrominated diphenyl ethers (PBDEs) and several alternative halogenated flame retardants (AHFRs), including decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HBB), pentabromotoluene (PBT), tetrabromop-xylene (pTBX), pentabromoethylbenzene (PBEB) and dechlorane plus (DP). The mean concentrations of PBDEs, DBDPE, BTBPE, pTBX, PBT, PBEB, HBB and DP in mangrove plant species were 2010, 1870, 36.2, 18.7, 40.1, 17.8, 9.68 and 120 pg g⁻¹ dry weight, respectively. PBDEs were the dominant HFRs in mangrove plant tissues, followed by DBDPE. The relative abundance of BDE 209 in three mangrove plant tissues were much lower than those in sediments. Significant negative relationships between log root bioaccumulation factors and log Kₒw, and between log TFᵣ₋ₛ (from root to stem) and log Kₒw were observed, indicating that HFRs with low hydrophobicity were easily absorbed by mangrove roots and stems. A positive correlation between log TFₛ₋ₗ (from stem to leaf) and log Kₒw were found, suggesting that air-leaf exchange may occur in mangrove plants. This study highlights the uptake of HFRs by mangrove plants, which can be used as remediation for HFRs contamination in the environment.
اظهر المزيد [+] اقل [-]