خيارات البحث
النتائج 1 - 10 من 157
Paleotoxicity of petrogenic and pyrogenic hydrocarbon mixtures in sediment cores from the Athabasca oil sands region, Alberta (Canada)
2022
Thomas, Philippe J. | Eickmeyer, David C. | Eccles, Kristin M. | Kimpe, Linda E. | Felzel, Emiel | Brouwer, Abraham | Letcher, Robert J. | Maclean, Bruce D. | Chan, Laurie H.M. | Blais, Jules M.
Despite the economic benefits of the oil and gas industry in Northern Alberta, significant concerns exist regarding the impacts of increased oil production on the environment and human health. Several studies have highlighted increases in the concentrations of polycyclic aromatic compounds (PACs) and other hydrocarbons in the atmosphere, water, soil and sediments, plants, wildlife and fish in the Athabasca Oil Sands Region (AOSR) as a result of oil sands industrial activity. Sediment cores can provide information on the temporal trends of contaminants to the environment and provide important baseline information when monitoring data are absent. Here we combined analytical chemistry and a mammalian cell-based bioassay in dated lake sediment cores to assess paleotoxicity in freshwater systems in the AOSR. Sediment intervals were radiometrically dated and subsequently analysed for PACs. PAC extracts from select dated intervals were used in cell-based bioassays to evaluate their endocrine disrupting properties. We demonstrated spatial and temporal variability in the PAC composition of sediment cores around the AOSR with some of the highest concentrations of PACs detected near oil sands industrial activity north of Fort McMurray (AB) in La Saline Natural Area. Recent sediment had positive enrichment factors across most PAC analytes at this site with heavier pyrogenic compounds such as benz(a)anthracene/chrysene and benzofluoranthene/benzopyrene dominating. Our study is the first to link chemical analysis of sediment cores with biological effect assessments of endocrine activity showing feasibility of extending the usefulness of sediment cores in monitoring programs interested in complex mixture assessments. While we observed no spatial or temporal differences in ERα mediated signaling, AhR CALUX results mirrored those of the chemical analysis, demonstrating the utility of coupling biological effects assessments to historical reconstructions of contaminant inputs to the natural environment.
اظهر المزيد [+] اقل [-]Role of RNA m6A modification in titanium dioxide nanoparticle-induced acute pulmonary injury: An in vitro and in vivo study
2022
Ruan, Fengkai | Liu, Changqian | Wang, Yi | Cao, Xisen | Tang, Zhen | Xu, Jiaying | Zeng, Jie | Yin, Hanying | Zheng, Naying | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong
RNA N⁶-methyladenosine (m⁶A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO₂)-induced acute pulmonary injury is associated with the m⁶A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m⁶A modification and the bioeffects of several engineered nanoparticles (nTiO₂, nAg, nZnO, nFe₂O₃, and nCuO) were verified thorough in vitro experiments. nFe₂O₃, nZnO, and nTiO₂ exposure significantly increased the global m⁶A level in A549 cells. Our study further revealed that nTiO₂ can induce m⁶A-mediated acute pulmonary injury. Mechanistically, nTiO₂ exposure promoted methyltransferase-like 3 (METTL3)-mediated m⁶A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m⁶A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO₂ exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m⁶A upregulation, and the inflammatory response caused by nTiO₂ both in vitro and in vivo. In conclusion, our study demonstrates that m⁶A is a potential intervention target for alleviating the adverse effects of nTiO₂-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.
اظهر المزيد [+] اقل [-]Characterization of polycyclic aromatic compounds in historically contaminated soil by targeted and non-targeted chemical analysis combined with in vitro bioassay
2021
Titaley, Ivan A. | Lam, Monika M. | Bülow, Rebecca | Enell, Anja | Wiberg, Karin | Larsson, Maria
Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene. The aryl hydrocarbon receptor (AhR)-activity of the soil extracts was assessed using the H4IIe-pGudluc 1.1 cells bioassay. When compared with the calculated total AhR-activity of the PACs in the target list, 35–97% of the observed bioassay activity could be explained by 62 PACs with relative potency factors (REPs). The samples were further screened using GC coupled with Orbitrap™ high resolution MS (GC-HRMS) to investigate the presence of other PACs that could potentially contribute to the AhR-activity of the extracts. 114 unique candidate compounds were tentatively identified and divided into four groups based on their AhR-activity and environmental occurrence. Twelve substances satisfied all the criteria, and these compounds are suggested to be included in regular screening in future studies, although their identities were not confirmed by standards in this study. High unexplained bio-TEQ fractions in three of the samples may be explained by tentatively identified compounds (n = 35) with high potential of being toxic. This study demonstrates the benefit of combining targeted and non-targeted chemical analysis with bioassay analysis to assess the diversity and effects of PACs at contaminated sites. The applied prioritization strategy revealed a number of tentatively identified compounds, which likely contributed to the overall bioactivity of the soil extracts.
اظهر المزيد [+] اقل [-]Pharmaceutically active compounds (PhACs) in surface sediments of the Jiaozhou Bay, north China
2020
Peng, Quancai | Song, Jinming | Li, Xuegang | Yuan, Huamao | Liu, Mengtan | Duan, Liqin | Zuo, Jiulong
Pharmaceutically active compounds (PhACs) have attracted increasing attention due to their large consumption volumes, high bioactivity and potential ecotoxicity. In this study, a total of 150 commonly used drugs were investigated in sediments of Jiaozhou Bay (JZB). Twenty-five target compounds were detected, of which ten were discovered for the first time in marine sediments. The range of total PhAC content was 3.62–21.4 ng/g dry weight. Ketoprofen (2.49 ng/g), oxytetracycline (1.00 ng/g) and roxithromycin (0.97 ng/g) were the preponderant PhACs. PhACs gradually decreased from east to west, and the distribution of PhACs in the sediment was controlled by the source channel, seawater dynamic process and sediment composition. The diatom, organic matter, and clay proportions in the sediments and the nutrients in the overlying water were the most important environmental factors affecting the distribution of PhACs. PhAC pollution in the sediments of the JZB exhibited an increasing trend. Coprostanol could be used as a chemical indicator of the PhAC concentration in JZB sediments. PhACs were mainly derived from direct pollution due to human fecal excretion in the eastern region. Ofloxacin, tetracycline and oxytetracycline were found to pose high or medium risks to aquatic organisms. It is necessary and urgent to improve the treatment technology of drug residues in sewage treatment plants to decrease the pollution of PhAC residues. With the continuous aging of the global population, the use of PhACs will increase rapidly, which may cause more unpredictable threats to the marine ecosystem. Therefore, the monitoring of PhACs in the marine environment needs to be strengthened, and studies on PhAC occurrence and effects must be considered a priority in global environmental research.
اظهر المزيد [+] اقل [-]Sorption and desorption of organic UV filters onto microplastics in single and multi-solute systems
2019
Ho, Wai-Kit | Leung, Kelvin Sze-Yin
Sorption studies of organic pollutants by microplastics (MPs) in single-solute systems are well established in the literature. However, actual aquatic environments always contain a mixture of contaminants. Prediction of the fate and biological effects of MPs-mediated chemical exposure requires a better understanding of sorption-desorption processes of multiple organic contaminants by MPs. In this study, the altered sorption and desorption behaviors of individual organic UV filters (BP-3 and 4-MBC) in the presence of cosolutes (BP-3, 4-MBC, EHMC and OC) on two types of MPs (LDPE and PS) were examined. In most cases, co-occurrence of other organic UV filters appeared to have an antagonistic effect on the sorption of primary solute, which was consistent with trends found in previous studies. Nevertheless, the sorption uptake of 4-MBC as primary solute on PS was enhanced in the presence of cosolute(s), arising presumably from solute multilayer formation caused by laterally attractive π-π interactions between adsorbed cosolute(s) and 4-MBC molecules. Such formation of multilayer sorption in multi-solute systems depends on the solute hydrophobicity and concentration as well as inherent sorptivity of MPs. Our further desorption experiments revealed that the bioaccessibility of primary solute was significantly elevated with cosolutes, even though competitive sorption was observed under the same experimental conditions. These findings supplement the current knowledge on sorption mechanisms and interactions of multiple organic contaminants on MPs, which are critical for a comprehensive environmental risk assessment of both MPs and hazardous anthropogenic contaminants in natural environments.
اظهر المزيد [+] اقل [-]Contaminants in bald eagles of the upper Midwestern U.S.: A framework for prioritizing future research based on in-vitro bioassays
2019
Elliott, Sarah M. | Route, William T. | DeCicco, Laura A. | VanderMeulen, David D. | Corsi, Steven R. | Blackwell, Brett R.
Several organic contaminants (OCs) have been detected in bald eagle (Haliaeetus leucocephalus) nestling (eaglet) plasma in the upper Midwestern United States. Despite frequent and relatively high concentrations of OCs in eaglets, little is understood about potential biological effects associated with exposure. We screened an existing database of OC concentrations in eaglet plasma collected from the Midwestern United States against bioactivity information from the ToxCast database. ToxCast bioactivity information consists of concentrations expected to elicit responses across a range of biological space (e.g. cellular, developmental, etc.) obtained from a series of high throughput assays. We calculated exposure—activity ratios (EAR) by calculating the ratio of plasma concentrations to concentrations available in ToxCast. Bioactivity data were not available for all detected OCs. Therefore, our analysis provides estimates of potential bioactivity for 19 of the detected OCs in eaglet plasma. Perfluorooctanesulfonic acid (PFOS) EAR values were consistently the highest among all study areas. Maximum EAR values were ≥1 for PFOS, perfluorononanoic acid, and bisphenol A in 99.7, 0.53 and 0.26% of samples, indicating that some plasma concentrations were greater than what may be expected to elicit biological responses. About 125 gene targets, indicative of specific biological pathways, were identified as potentially being affected. Inhibition of several CYP genes, involved in xenobiotic metabolism, were most consistently identified. Other identified biological responses have potential implications for motor coordination, cardiac functions, behavior, and blood circulation. However, it is unclear what these results mean for bald eagles, given that ToxCast data are generated using mammalian-based endpoints. Despite uncertainties and limitations, this method of screening environmental data can be useful for informing future monitoring or research focused on understanding the occurrence and effects of OCs in bald eagles and other similarly-positioned trophic species.
اظهر المزيد [+] اقل [-]Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review
2019
Świacka, Klaudia | Maculewicz, Jakub | Smolarz, Katarzyna | Szaniawska, Anna | Caban, Magda
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
اظهر المزيد [+] اقل [-]Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints
2018
Pusceddu, F.H. | Choueri, R.B. | Pereira, C.D.S. | Cortez, F.S. | Santos, D.R.A. | Moreno, B.B. | Santos, A.R. | Rogero, J.R. | César, A.
The guidelines for the Environmental Risk Assessment (ERA) of pharmaceuticals and personal care products (PPCP) recommend the use of standard ecotoxicity assays and the assessment of endpoints at the individual level to evaluate potential effects of PPCP on biota. However, effects at the sub-individual level can also affect the ecological fitness of marine organisms chronically exposed to PPCP. The aim of the current study was to evaluate the environmental risk of two PPCP in marine sediments: triclosan (TCS) and ibuprofen (IBU), using sub-individual and developmental endpoints. The environmental levels of TCS and IBU were quantified in marine sediments from the vicinities of the Santos submarine sewage outfall (Santos Bay, São Paulo, Brazil) at 15.14 and 49.0 ng g⁻¹, respectively. A battery (n = 3) of chronic bioassays (embryo-larval development) with a sea urchin (Lytechinus variegatus) and a bivalve (Perna perna) were performed using two exposure conditions: sediment-water interface and elutriates. Moreover, physiological stress through the Neutral Red Retention Time Assay (NRRT) was assessed in the estuarine bivalve Mytella charruana exposed to TCS and IBU spiked sediments. These compounds affected the development of L. variegatus and P. perna (75 ng g⁻¹ for TCS and 15 ng g⁻¹ for IBU), and caused a significant decrease in M. charruana lysosomal membrane stability at environmentally relevant concentrations (0.08 ng g⁻¹ for TCS and 0.15 ng g⁻¹ for IBU). Chemical and ecotoxicological data were integrated and the risk quotient estimated for TCS and IBU were higher than 1.0, indicating a high environmental risk of these compounds in sediments. These are the first data of sediment risk assessment of pharmaceuticals and personal care products of Latin America. In addition, the results suggest that the ERA based only on individual-level and standard toxicity tests may overlook other biological effects that can affect the health of marine organisms exposed to PPCP.
اظهر المزيد [+] اقل [-]Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming
2018
Gomiero, A. | Bellerby, R.G.J. | Manca Zeichen, M. | Babbini, L. | Viarengo, A.
Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9[pH], 25.5 °C and TR2: 7.8[pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested.
اظهر المزيد [+] اقل [-]Endocrine disruption and differential gene expression in sentinel fish on St. Lawrence Island, Alaska: Health implications for indigenous residents
2018
von Hippel, Frank A. | Miller, Pamela K. | Carpenter, David O. | Dillon, Danielle | Smayda, Lauren | Katsiadaki, Ioanna | Titus, Tom A. | Batzel, Peter | Postlethwait, John H. | Buck, C Loren
People living a subsistence lifestyle in the Arctic are highly exposed to persistent organic pollutants, including polychlorinated biphenyls (PCBs). Formerly Used Defense (FUD) sites are point sources of PCB pollution; the Arctic contains thousands of FUD sites, many co-located with indigenous villages. We investigated PCB profiles and biological effects in freshwater fish (Alaska blackfish [Dallia pectoralis] and ninespine stickleback [Pungitius pungitius]) living upstream and downstream of the Northeast Cape FUD site on St. Lawrence Island in the Bering Sea. Despite extensive site remediation, fish remained contaminated with PCBs. Vitellogenin concentrations in males indicated exposure to estrogenic contaminants, and some fish were hypothyroid. Downstream fish showed altered DNA methylation in gonads and altered gene expression related to DNA replication, response to DNA damage, and cell signaling. This study demonstrates that, even after site remediation, contaminants from Cold War FUD sites in remote regions of the Arctic remain a potential health threat to local residents – in this case, Yupik people who had no influence over site selection and use by the United States military.
اظهر المزيد [+] اقل [-]