خيارات البحث
النتائج 1 - 10 من 18
Application of calcium alginate-PANI@sawdust wood hydrogel bio-beads for the removal of orange G dye from aqueous solution
2022
Imgharn, Abdelaziz | Aarab, Nouh | Hsini, Abdelghani | Naciri, Yassine | Elhoudi, Mohammed | Haki, Mohamed Ait | Laabd, Mohamed | Lakhmiri, Rajae | Albourine, Abdallah
This work aims to investigate the adsorption performance of orange G (OG) dye from aqueous solutions employing PANI@sawdust biocomposite enrobed by calcium-alginate bio-beads (Alg-PANI@SD). The as-prepared adsorbent was characterized by scanning-electron-microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), and Fourier transforms infrared (FT-IR) spectroscopy and used to remove orange G dye from aqueous water. Batch tests were performed as a function of adsorbent dosage, pH, contact time, interfering ions, and initial OG dye concentration. Experimental results show that the kinetic model of pseudo-first-order (PFO) and Freundlich isotherm perfectly fit the entire experimental data. Additionally, the prepared composite exhibited an excellent regeneration capacity and reusability for OG dye removal. The results revealed that the as-prepared Alg-PANI@SD bio-beads have the potential to be applied as a low-cost adsorbent for the adsorption of OG dye from aqueous media.
اظهر المزيد [+] اقل [-]Novel bio-fertilizer based on nitrogen-fixing bacterium immobilized in a hydrotalcite/alginate composite material
2022
Velázquez-Herrera, Franchescoli Didier | Lobo-Sánchez, Marta | Carranza-Cuautle, Giovanna M. | Sampieri, Álvaro | del Rocío Bustillos-Cristales, María | Fetter, Geolar
The bacterium Streptomyces sp. is a common genus of the actinomycetes class found in soils and rhizospheres. This bacterium can produce substances with bio-stimulant capacity through the fixation of nitrogen from the air. In this work, the Streptomyces sp. bacterium was immobilized on a ZnMgAl-hydrotalcite clay and embedded in calcium alginate beads to generate a novel bio-composite that functions as a bacterial reservoir and as a controlled release material for bacteria to be used as a bio-fertilizer.The results showed that the novel bacterium-hydrotalcite/alginate bio-composite was very efficient as a bio-fertilizer showing a plant length of 64 mm in only 14 days of growing, which corresponds to an increase of ca. 760% in the lettuce plant growth in comparison with the materials without bacteria. In short, the present results demonstrate that the hydrotalcite and alginate served as an excellent container to keep the bacteria alive, providing nutrients to them and controlling their delivery.
اظهر المزيد [+] اقل [-]Performance of oxalic acid-chitosan/alumina ceramic biocomposite for the adsorption of a reactive anionic azo dye
2021
Pérez-Calderón, John | Scian, Alberto | Ducos, Martin | Santos, Victoria | Zaritzky, Noemí
A biocomposite system was developed and tested for the removal of the azo dye Reactive Red (RR195) from wastewater. The biocomposite was synthesized using ceramic particles containing 75% alumina which were coated using chitosan cross-linked with oxalic acid. The biocomposite showed high performance at low pH (maximum adsorption capacity = 345.3mg.g⁻¹ at pH=2.0). The physicochemical and structure characteristics of the matrix were evaluated by Z-potential, FTIR-ATR, SEM-EDS, XRD, and porosity. Langmuir sorption isotherm and pseudosecond-order model gave the best fit. The electrostatic interaction between RR195 (due to the sulfonate groups) and the free amino groups of chitosan, enabled successive desorption/regeneration cycles. The maximum removal percentage (>80%) occurred at pH=2.0 due to the cross-linking effect. Experiments at different temperatures allowed the calculation of thermodynamic parameters (ΔG, ΔS, ΔH); adsorption was spontaneous, exothermic, and enthalpy controlled. The presence of inorganic ions ([Formula: see text]) was analyzed during the adsorption process. This novel biocomposite can be applied as a cost-effective and environmentally friendly adsorbent for anionic azo dye removal from wastewater. The application of chitosan cross-linked with oxalic acid as a coating of the ceramic support enhanced the adsorption capacity and enabled its use under acidic conditions without solubilization.
اظهر المزيد [+] اقل [-]Textile effluent treatment employing yeast biomass and a new nanomagnetic biocomposite
2021
Nascimento, Jacqueline R. | Bezerra, Kátia C.H. | Martins, Tiago D. | Carrilho, Elma N.V.M. | Rodrigues, Christiane de A. | Labuto, Geórgia
Fabric dyeing produces high amounts of wastewater containing organic and inorganic pollutants such as reactive dyes that are the most common textile dyes employed by the industry. Three vinylsulfonic reactive dyes, blue 19 (B-19), red 198 (R-198), and yellow 15 (Y-15), were removed from effluents of industrial-like dyeing processes employing three adsorbents: (1) magnetite nanoparticles (MNP), (2) yeast waste obtained after β-glucan removal from yeast biomass (YW), and (3) nanomagnetic composite produced from YW and MNP (YW-MNP). The non-linear kinetic pseudo-second-order and two-stage models best explained the experimental phenomena for the majority of adsorbate:adsorbent systems. The theoretical isotherm models were fitted to experimental isotherms obtained from experiments conducted with appropriated dilutions of effluents, which have a specific condition, limited by the maximum dye concentration established by the dye recipe. Thus, the saturation of adsorbents was not reached for all adsorbate:adsorbent systems. In this way, the best conditional sorption capacities (SCcₒₙd) were obtained by YW (1.7, 2.3, and 2.5 g/kg for B-19, R-198, and Y-15, respectively). The SIPS model best described all dyes adsorbed by YW, while the D-R model best described the phenomena for MNP and YW-MNP.
اظهر المزيد [+] اقل [-]Optimization of synergistic biosorption of oxytetracycline and cadmium from binary mixtures on reed-based beads: modeling study using Brouers-Sotolongo models
2021
Karoui, Sarra | Ben Arfi, Rim | Fernández-Sanjurjo, María J. | Núñez Delgado, Avelino | Ghorbal, Achraf | Álvarez-Rodríguez, Esperanza
The first aim of this study was to synthesize and characterize reed-based-beads (BBR), an enhanced adsorbent from Tunisian reed. The second purpose was to evaluate and optimize the BBR efficiency for the simultaneous removal of oxytetracycline (OTC) and cadmium (Cd(II)), using central composite design under response surface methodology. The third goal was to elucidate the biosorption mechanisms taking place. It was shown that under optimum conditions (4.19 g L⁻¹ of BBR, 165.54 μmol L⁻¹ of OTC, 362.16 μmol L⁻¹ of Cd(II), pH of 6, and 25.14-h contact time) the highest adsorption percentages (63.66% for OTC and 99.99% for Cd(II)) were obtained. It was revealed that OTC adsorption mechanism was better described by Brouers-Sotolongo fractal equation, with regression coefficient (R²) of 0.99876, and a Person’s chi-square (χ²) of 0.01132. The Weibull kinetic equation better explained Cd(II) biosorption (R² = 0.99959 and χ² = 0.00194). FTIR and isotherm studies confirmed that the BBR surface was heterogeneous, and that adsorption mechanisms were better described by the Freundlich/Jovanovich equation (R² = 0.99276 and χ² = 0.04864) for OTC adsorption, and by the Brouers-Sotolongo model (R² = 0.9851 and χ² = 0.77547) for Cd(II) biosorption. Overall results indicate that, at last, the BBR lignocellulosic biocomposite beads could be considered as cost-effective and efficient adsorbent, which could be of socioeconomic and environmental relevance. Graphical abstract
اظهر المزيد [+] اقل [-]Insight into Decolorization Characteristics of a Green Biocomposite Sorbent System Prepared by Immobilization of Fungal Cells on Lignocellulosic Matrix: Box-Behnken Design
2022
Sayin, Fatih
In this study, the biosorption performance of Thamnidium elegans (T. elegans) immobilized on Phragmites australis (P. australis), a new biocomposite (TEPA), was examined for decolorization of water using batch and column mode tests. Various affecting experimental parameters such as pH, biocomposite amount, and stirring speed were examined and optimized by an experimental design. Regression analysis indicated that the findings of the Box-Behnken experimental design (BBD) optimization experiment closely match a quadratic model. ANOVA findings revealed that pH and TEPA amount affected Reactive Blue 49 (RB49) biosorption yield. Optimum experimental RB49 decolorization was achieved with the biosorption yield of 96.51% at the conditions of pH: 1.68, TEPA mass: 53.4 mg, stirring speed: 204 rpm, and contact time: 45 min. RB49 sorption onto TEPA was explained using the Elovich and the pseudo-second-order kinetic and the Freundlich isotherm models. The maximum RB49 sorption capacity was 140.36 mg g⁻¹ at defined optimum conditions. Unloaded and dye-loaded biocomposite sorbents were characterized by SEM and FTIR analysis. The isoelectric point of TEPA was found as pH 1.7 by the zeta potential measurements. Furthermore, the newly developed biocomposite sorbent indicated the promise in terms of decolorizing real wastewater without losing dye sorption ability. Saturation biosorption capacities in column mode were 104.58 and 70.98 mg g⁻¹ in dye solution and real wastewater samples, respectively. TEPA can be considered cost-effective, ecofriendly, and promising alternative adsorbent for decolorization of reactive dye contaminated wastewater, as shown by all the findings.
اظهر المزيد [+] اقل [-]Bibliometric analysis of zerovalent iron particles research for environmental remediation from 2000 to 2019
2021
Li, Xiaoguang | Li, Zhonghong | Du, Caili | Tian, Zhenjun | Zhu, Qiuheng | Li, Guowen | Shen, Qian | Li, Caole | Li, Jiaxi | Li, Wei | Zhao, Chen | Zhang, Lieyu
Zerovalent iron (ZVI) has been a major focus of research and has attracted great attention during the last 2 decades by international researchers because of its excellent pollutant removal performance and several other merits in environmental remediation. Based on Web of Science Core Collection data, we present a comprehensive bibliometric analysis of ZVI research from 2000 to 2019. We analyze 4472 publications assuming three stages of growth trend of annual publication totals. We find that “The Chemical Engineering Journal” has been the most productive journal; Noubactep C is identified as the most productive author; China has been the most active country in this field and the Chinese Academy of Science the most productive institution. The timeline of keywords shows seven distinct co-citation clusters. In addition, the top 38 keywords with strong citation bursts are also detected, suggesting that the innovation of green composite synthesis of ZVI and nanoscale ZVI and its efficient removal capacity might be the prevailing research directions in the future.
اظهر المزيد [+] اقل [-]Bacterial cellulose/phytochemical’s extracts biocomposites for potential active wound dressings
2019
El-Wakil, Nahla A. | Hassan, Enas A. | Hassan, Mohammad L. | Abd El-Salam, Soheir S.
The present study describes the impregnation of coffee extract (CE) into bacterial cellulose synthesized from kombucha tea fungus (KBC) of different cellulose content, incubated for different incubation periods (2, 4, and 10 days), to prepare biocomposites having the potential for wound healing applications. Total polyphenols in hydroalcoholic extracts from ground roasted coffee and its release from the prepared biocomposites were determined as gallic acid equivalent. The polyphenols content was found to be 13.66 mg/g and the minimum inhibitory concentration (MIC) of the CE was determined using colony-forming unit (CFU) method against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus where the growth inhibition was 86 and 97% respectively. Biocomposites (KBC/CE) with the lowest cellulose and CE content showed the highest wet tensile stress (3.35 MPa), absorption of pseudo extracellular fluid (154.32% ± 4.84), and water vapor transmission rate (3184.94 ± 198.07 g/m²/day), whereas it showed the lowest polyphenols’ release (51.85% ± 2.94)when immersed in PBS buffer of pH 7.4. The impregnation of CE into KBC provided biocomposites that can enlarge the range of BC in the biomedical application.
اظهر المزيد [+] اقل [-]Heterogenous Lignocellulosic Composites as Bio-Based Adsorbents for Wastewater Dye Removal: a Kinetic Comparison
2015
Perez-Ameneiro, M. | Bustos, G. | Vecino, X. | Barbosa-Pereira, L. | Cruz, J. M. | Moldes, A. B.
Different lignocellulosic substrates consisting of modified barley husk, peanut shells and sawdust were entrapped in calcium alginate beads and used as adsorbents to remove dye compounds from vinasses. For comparative purposes, a biocomposite formulated with humus was also included in this work. Kinetic studies were carried out by applying pseudo-first-order, pseudo-second-order, Chien–Clayton and intraparticle diffusion models, observing a good agreement between theoretical and experimental results when the data were adjusted to pseudo-second-order kinetic model. The results of this study show that lignocellulosic-based biocomposites could be used as an effective and low-cost adsorbent for the removal of dyes from aqueous solutions. Among the heterogeneous biopolymers evaluated, the biocomposite based on barley husk gave the best capacity for dye removal. Moreover, in all cases, it was found that there exists a direct relationship between the capacity of the biocomposites to remove dyes and the percentage of carbon contained in the lignocellulosic residues.
اظهر المزيد [+] اقل [-]A passively immobilized novel biomagsorbent for the effective biosorptive treatment of dye contamination
2019
Divriklioglu, Melike | Akar, Sibel Tunali | Akar, Tamer
A new magnetic bio-based composite was designed by the magnetic modification of passively immobilized fungal cells. It was utilized for biosorptive decolorization of reactive dye-contaminated aquatic media. As a greener option, waste tea leaf tissues were used for the first time as an immobilization matrix for microbial cells. Immobilized magnetic cells (biomagsorbent) could be effectively used in both batch and dynamic flow mode treatment processes and real environmental application. Rapid equilibrium and high decolorization yields were observed for the target dye (reactive violet 1). The temperature did not significantly affect the process. Langmuir and the pseudo-second-order models could be better used to fit the process equilibrium and kinetics, respectively. Maximum monolayer sorption capacity was 152.88 mg g⁻¹. High biosorption and desorption yields for 50 consecutive dynamic flow decolorization cycles were recorded as striking results. The breakthrough time was 3420 min. Simulated and industrial water treatment performance of biomagsorbent was found to be more than 90%. The mechanism was evaluated by IR and zeta potential analysis. The magnetic character of the sorbent provided good mechanical durability, easy separation, and excellent regeneration ability. Consequently, this work provides new insight into scalar enhancement of water treatment.
اظهر المزيد [+] اقل [-]