خيارات البحث
النتائج 1 - 10 من 48
Integrated biotechnology to mitigate green tides
2022
Ren, Cheng-Gang | Liu, Zheng-Yi | Zhong, Zhi-Hai | Wang, Xiao-Li | Qin, Song
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
اظهر المزيد [+] اقل [-]Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland
2021
Feng, Sheng Jun | Liu, Xue Song | Cao, Hong Wei | Yang, Zhi Min
Cadmium (Cd) is a toxic heavy metal that initiates diverse chronic diseases through food chains. Developing a biotechnology for manipulating Cd uptake in plants is beneficial to reduce environmental and health risks. Here, we identified a novel epigenetic mechanism underlying Cd accumulation regulated by an uncharacterized metallochaperone namely Heavy Metal Responsive Protein (HMP) in rice plants. OsHMP resides in cytoplasm and nucleus, dominantly induced by Cd stress and binds directly to Cd ions. OsHMP overexpression enhanced the rice growth under Cd stress but accumulated more Cd, whereas knockout or knockdown of OsHMP showed a contrasting effect. The enhanced Cd accumulation in the transgenic lines was confirmed by a long-term experiment with rice growing at the environmentally realistic Cd concentration in soil. The bisulfite sequencing and chromatin immunoprecipitation assessments revealed that Cd stress reduced significantly the DNA methylation at CpG (Cytosine-Guanine) and histone H3K9me2 marks in the upstream of OsHMP. By identifying a couple of mutants defective in DNA methylation and histone modification (H3K9me2) such as Osmet1 (methylatransfease1) and Ossdg714 (kryptonite), we found that the Cd-induced epigenetic hypomethylation at the region was associated with OsHMP overexpression, which consequently led to Cd detoxification in rice. The causal relationship was confirmed by the GUS reporter gene coupled with OsHMP and OsMET1 whereby OsMET1 repressed directly the OsHMP expression. Our work signifies that expression of OsHMP is required for Cd detoxification in rice plants, and the Cd-induced hypomethylation in the specific region is responsible for the enhanced OsHMP expression. In summary, this study gained an insight into the epigenetic mechanism for additional OsHMP expression which consequently ensures rice adaptation to the Cd-contaminated environment.
اظهر المزيد [+] اقل [-]Cadmium contamination in agricultural soils of China and the impact on food safety
2019
Wang, Peng | Chen, Hongping | Kopittke, Peter M. | Zhao, Fang-Jie
Rapid industrialization in China during the last three decades has resulted in widespread contamination of Cd in agricultural soils. A considerable proportion of the rice grain grown in some areas of southern China has Cd concentrations exceeding the Chinese food limit, raising widespread concern regarding food safety. In this review, we summarize rice grain Cd concentrations in national Chinese markets and in field surveys from contaminated areas, and analyze the potential health risk associated with increased dietary Cd intake. For subsistence rice farmers living in some contaminated areas of southern China who mainly consume locally-produced Cd-contaminated rice, their estimated dietary Cd intake is now comparable to that for the population in the region of Japan where the Itai-Itai disease was first reported. Interventions must be taken urgently to reduce Cd intake for these farmers. We also analyze i) the main reasons causing elevated grain Cd concentrations in southern China, ii) the dominant biogeochemical processes controlling the solubility of Cd in paddy soils, and iii) molecular mechanisms for the uptake and translocation of Cd in rice plants. Based on these analyses, we propose a number of countermeasures to address soil Cd contamination, including i) mitigation of Cd transfer from paddy soils to rice grain, and ii) intervention in those farmers who consume home-grown Cd-contaminated rice. Liming to increase soil pH to 6.5 and gene editing biotechnology are effective strategies to decrease Cd accumulation in rice grain. For these local farmers with high-Cd exposure risk, local governments should monitor the Cd concentration in their home-grown rice and exchange those high-Cd rice with low-Cd rice in order to reduce their dietary Cd intake.
اظهر المزيد [+] اقل [-]Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment
2018
Ye, Mao | Sun, Mingming | Zhao, Yuanchao | Jiao, Wentao | Xia, Bing | Liu, Manqiang | Feng, Yanfang | Zhang, Zhongyun | Huang, Dan | Huang, Rong | Wan, Jinzhong | Du, Ruijun | Jiang, Xin | Hu, Feng
High abundances of antibiotic-resistant pathogenic bacteria (ARPB) and antibiotic resistance genes (ARGs) in agricultural soil-plant systems have become serious threats to human health and environmental safety. Therefore, it is crucial to develop targeted technology to control existing antibiotic resistance (AR) contamination and potential dissemination in soil-plant systems. In this work, polyvalent bacteriophage (phage) therapy and biochar amendment were applied separately and in combination to stimulate ARPB/ARG dissipation in a soil-lettuce system. With combined application of biochar and polyvalent phage, the abundance of Escherichia coli K-12 (tetR) and Pseudomonas aeruginosa PAO1 (ampR + fosR) and their corresponding ARGs (tetM, tetQ, tetW, ampC, and fosA) significantly decreased in the soil after 63 days' incubation (p < 0.05). Similar results for endophytic K-12 and PAO1, and ARGs, were also obtained in lettuce tissues following combined treatment. Additionally, high throughput sequencing revealed that biochar and polyvalent phage synergetically improved the structural diversity and functional stability of the indigenous bacterial communities in soil and the endophytic ones in lettuce. Hence, this work proposes a novel biotechnology that combines biochar amendment and polyvalent phage therapy to achieve targeted inactivation of ARPB, which stimulates ARG dissipation in soil-lettuce systems.
اظهر المزيد [+] اقل [-]Waste recombinant DNA: Effectiveness of thermo-treatment to manage potential gene pollution
2009
Fu, Xiaohua | Li, Mengnan | Zheng, Guanghong | Le, Yiquan | Wang, Lei
Heating at 100 °C for 5-10 min is a common method for treating wastewater containing recombinant DNA in many bio-laboratories in China. In this experiment, plasmid pET-28b was used to investigate decay efficiency of waste recombinant DNA during thermo-treatment. The results showed that the decay half-life of the plasmid was 2.7-4.0 min during the thermo-treatment, and even heating for 30 min the plasmids still retained some transforming activity. Low pH promoted the decay of recombinant DNA, but NaCl, bovine serum albumin and EDTA, which existed in the most wastewater from bio-laboratories, protected DNA from degradation. Thus, the decay half-life of plasmid DNA may be longer than 2.7-4.0 min practically. These results suggest that the effectiveness of heating at 100 °C for treating waste recombinant DNA is low and a gene pollution risk remains when those thermo-treated recombinant DNAs are discharged into the environment. Therefore other simple and effective methods should be developed. Heating at 100 °C for 5-10 min to treat waste recombinant DNA has potential eco-risk.
اظهر المزيد [+] اقل [-]Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga
2019
Bai, Xuelian | Acharya, Kumud
The present endocrine disrupting chemicals (EDCs) in wastewater effluents due to incomplete removal during the treatment processes may cause potential ecological and human health risks. This study evaluated the removal and uptake of seven EDCs spiked in two types of wastewater effluent (i.e., ultrafiltration and ozonation) and effluent cultivated with the freshwater green alga Nannochloris sp. In ultrafiltration effluent cultivated with Nannochloris sp. for 7 days, the removal rate of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and salicylic acid (SAL) was 60%; but Nannochloris sp. did not promote the removal of other EDCs studied. The algal-mediated removal of E2, EE2, and SAL was attributed to photodegradation and biodegradation. Triclosan (TCS) underwent rapid photodegradation regardless of adding algae in the effluent with 63%–100% removal within 7 days. Triclosan was also found associated with algal cells immediately after adding algae, and thus the primary mechanisms involved were photodegradation and bioremoval (i.e., bioadsorption and bioaccumulation). After algal cultivation, TCS still has a bioaccumulation potential to pose high risks within the food web and the endocrine disrupting properties of the residual estrogens in the effluent are not eliminated. Algal cultivation can be exploited to treat wastewater effluents but the removal efficiencies of EDCs highly depend on chemical types.
اظهر المزيد [+] اقل [-]Environmental pollution by antibiotics and by antibiotic resistance determinants
2009
Martínez, José Luis
Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.
اظهر المزيد [+] اقل [-]Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil
2009
Andria, Verania | Reichenauer, Thomas G. | Sessitsch, Angela
For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.
اظهر المزيد [+] اقل [-]Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum
2017
Jin, Yujian | Fan, Xiaoji | Li, Xingxing | Zhang, Zhenyan | Sun, Liwei | Fu, Zhengwei | Lavoie, Michel | Pan, Xiangliang | Qian, Haifeng
Nano-aluminium oxide (nAl2O3) is one of the most widely used nanomaterials. However, nAl2O3 toxicity mechanisms and potential beneficial effects on terrestrial plant physiology remain poorly understood. Such knowledge is essential for the development of robust nAl2O3 risk assessment. In this study, we studied the influence of a 10-d exposure to a total selected concentration of 98 μM nAl2O3 or to the equivalent molar concentration of ionic Al (AlCl3) (196 μM) on the model plant Arabidopsis thaliana on the physiology (e.g., growth and photosynthesis, membrane damage) and the transcriptome using a high throughput state-of-the-art technology, RNA-seq. We found no evidence of nAl2O3 toxicity on photosynthesis, growth and lipid peroxidation. Rather the nAl2O3 treatment stimulated root weight and length by 48% and 39%, respectively as well as photosynthesis opening up the door to the use of nAl2O3 in biotechnology and nano agriculture. Transcriptomic analyses indicate that the beneficial effect of nAl2O3 was related to an increase in the transcription of several genes involved in root growth as well as in root nutrient uptake (e.g., up-regulation of the root hair-specific gene family and root development genes, POLARIS protein). By contrast, the ionic Al treatment decreased shoot and root weight of Arabidopsis thaliana by 57.01% and 45.15%, respectively. This toxic effect was coupled to a range of response at the gene transcription level including increase transcription of antioxidant-related genes and transcription of genes involved in plant defense response to pathogens. This work provides an integrated understanding at the molecular and physiological level of the effects of nAl2O3 and ionic Al in Arabidopsis.
اظهر المزيد [+] اقل [-]Antibiotic resistance marker genes as environmental pollutants in GMO-pristine agricultural soils in Austria
2015
Woegerbauer, Markus | Zeinzinger, Josef | Gottsberger, Richard Alexander | Pascher, Kathrin | Hufnagl, Peter | Indra, Alexander | Fuchs, Reinhard | Hofrichter, Johannes | Kopacka, Ian | Korschineck, Irina | Schleicher, Corina | Schwarz, Michael | Steinwider, Johann | Springer, Burkhard | Allerberger, Franz | Nielsen, Kaare M. | Fuchs, Klemens
Antibiotic resistance genes may be considered as environmental pollutants if anthropogenic emission and manipulations increase their prevalence above usually occurring background levels. The prevalence of aph(3′)-IIa/nptII and aph(3′)-IIIa/nptIII – frequent marker genes in plant biotechnology conferring resistance to certain aminoglycosides – was determined in Austrian soils from 100 maize and potato fields not yet exposed to but eligible for GMO crop cultivation. Total soil DNA extracts were analysed by nptII/nptIII-specific TaqMan real time PCR. Of all fields 6% were positive for nptII (median: 150 copies/g soil; range: 31–856) and 85% for nptIII (1190 copies/g soil; 13–61600). The copy-number deduced prevalence of nptIII carriers was 14-fold higher compared to nptII. Of the cultivable kanamycin-resistant soil bacteria 1.8% (95% confidence interval: 0–3.3%) were positive for nptIII, none for nptII (0–0.8%). The nptII-load of the studied soils was low rendering nptII a typical candidate as environmental pollutant upon anthropogenic release into these ecosystems.
اظهر المزيد [+] اقل [-]