خيارات البحث
النتائج 1 - 10 من 1,223
Evaluating the application of wastewater in different soil depths (Case study: Zabol) النص الكامل
2017
Shojaee, Saeed | Zehtabian, Gholamreza | Jafary, Mohammad | Khosravi, Hasan
Water scarcity, its necessity in food production, and environmental protection in the world have forced human beings to seek new water sources. Nowadays, application of unconventional water resources (wastewater) has been proposed in countries facing the crisis of water resources shortage; however, a few studies have dealt with this issue. The present study has evaluated the changes in the elements of the soil, irrigated with wastewater. For so doing, an experiment has been conducted on a randomized complete block design with three replications. Soil samples have been collected from the studied regions at two depths of 0-30 cm and 30-60 cm and the studied parameters have included sodium, total calcium, magnesium, some acidity, and electrical conductivity of the soil. Three regions of study (namely no irrigation, irrigation with treated wastewater, and irrigation with river waters) have been taken into consideration. Results have shown increased calcium, magnesium, and pH of the effluent from Zabol Wastewater Treatment Plant compared to the control; however, electrical conductivity and chloride have decreased in wastewater-irrigated soil. The electrical conductivity in the surface layer of wastewater samples, treated with an amount of 2.25 (ds/m), has had the most significant difference to the control and other treatments. It can be concluded that wastewater increases some soil properties, contributing to its restoration.
اظهر المزيد [+] اقل [-]Nutrient disturbances in forest trees and the nature of the forest decline in Quebec and Germany.
1990
Tomlinson G.H.
Foliar leaching and root uptake of Ca, Mg and K in relation to acid fog effects on Douglas-fir.
1990
Turner D.P. | Tingey D.T.
Relationship Between Atmospheric Dissolved Deposition and Mineral Dust Deposition in French Forests النص الكامل
2013
Lequy, Emeline | Nicolas, Manuel | Conil, Sébastien | Turpault, Marie-Pierre, M.-P. | Unité de recherche Biogéochimie des Ecosystèmes Forestiers (BEF) ; Institut National de la Recherche Agronomique (INRA) | Observ Perenne Environm, DRD Observat Surveillance ; Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA) | Direct Tech & Commerciale Boi ; Partenaires INRAE | Andra; GIP ECOFOR
International audience | Calcium dissolved deposition shows an unusual spatial structure in France, probably due to the contribution of southern air masses from Mediterranean Sea and Saharan desert. These masses are often loaded with terrigenous particles that contain carbonates. However, no precise relationship has been quantified between dissolved Ca and mineral dust deposition (MDD). The database of the French network RENECOFOR, gathering atmospheric deposition <0.45 mu m in 27 sites near forests during 18 years, was used to determine the non-sea-salt atmospheric deposition over France. This study (1) explores the relationship between dissolved components to decipher their origin in atmospheric deposition nearby forests and (2) tests the use of dissolved Ca and Mg as proxies for MDD. In the RENECOFOR database, non-sea-salt Ca (nssCa) preferentially deposited between May and August. MDD observed in RENECOFOR was synchronic with high nssCa deposition, particularly in June 2008, when air mass highly loaded with Saharan dust covered France. The dissolution of this mineral dust likely contributed to the nssCa deposition of this period and suggested a relationship between the depositions of nssCa and MDD. Then, MDD was specifically sampled with dissolved deposition in four sampling sites. Encouraging relationships were found between MDD and the depositions of nssMg and nssCa, suggesting that the latter could be used as a proxy for MDD in regions where it is not monitored, and in a retrospective approach in order to calculate nutrient fluxes.
اظهر المزيد [+] اقل [-]Variation factors of some minerals in camel milk النص الكامل
2008
Konuspayeva, Gaukhar | Narmuratova, Meiramkul | Meldebekova, Aliya | Faye, Bernard | Loiseau, Gérard
In four regions of Kazakhstan (Atyrau, Aralsk, Shymkent and Almaty), a survey on camel farms was achieved in order to study the variability of the physico-chemical composition of camel milk both in dromedary (Camelus dromedarius) and Bactrian (Camelus bactrianus) camel as well as their hybrids. As the whole, 163 milk samples were analyzed for calcium, phosphorus and iron determination. In order to maximize the variance, the samples were done in four different seasons which expressed the feeding change and the physiological stage changes as the calving season was concentrated in few months. The mean values were respectively 1.232 ± 0.292 g/l, 1.003 ± 0.217 g/l and 2.02 ± 1.24 mg/l for calcium, phosphorus and iron. No species, season or region effect was observed on iron content in the milk. Calcium and phosphorus change significantly according to season and species, but only phosphorus was linked to region effect. Especially phosphorus content is high in Aralsk region (1.156 ± 0.279 g/l). Globally, it is noticeable to observe the high level of phosphorus in the camel milk of Kazakhstan compared to the literature's results. (Résumé d'auteur)
اظهر المزيد [+] اقل [-]Midgut and fat body: Multisystemic action of pyriproxyfen on non-target organism Ceraeochrysa claveri (Neuroptera: Chrysopidae) النص الكامل
2022
Scudeler, Elton Luiz | Carvalho, Shelly Favorito de | Garcia, Ana Silvia Gimenes | Santorum, Marilucia | Padovani, Carlos Roberto | Santos, Daniela Carvalho dos
Morphological tools can assist in the evaluation of effects of insecticides on non-target insects. Pyriproxyfen, a juvenile hormone analog, is known to interfere with growth and metamorphosis of insects. However, there are studies showing indirect effects on natural enemies, including green lacewings. Few prior studies describe morphological effects of pyriproxyfen on target insect organs, especially on natural enemies. Through morphological tools, this study aimed to characterize the midgut and fat body, both important organs of digestion and great metabolic activity respectively, of the predator Ceraeochrysa claveri after chronic exposure to pyriproxyfen. Larvae of C. claveri were fed Diatraea saccharalis egg clusters treated with pyriproxyfen in solution of 50 or 100 mg a.i. L⁻¹ throughout the larval stage. The biological data revealed significant increases in development time, especially in the third instar, and in cumulative mortality from the prepupal into the pupal stage. Morphological analysis of adult midgut (≤24 h old) showed damage including formation of epithelial folds, intercellular spaces, emission of cytoplasmic protrusions. Both fat body regions presented decrease of lipid droplets, vacuolization of trophocytes and mitochondrial injury featuring a multisystemic action. In both organs, pyriproxyfen exposure induced significant oxidative stress by mitochondrial superoxide production. Cytoprotective responses were induced in midgut and fat body cells by augmenting the number of cytoplasmic granules containing calcium and expression of HSP 90. Both organs proved to be efficient in presenting histopathological alterations, showing the sensitivity and applicability of this morphological tool for evaluating other insecticides in non-target organisms.
اظهر المزيد [+] اقل [-]Increased contribution to PM2.5 from traffic-influenced road dust in Shanghai over recent years and predictable future النص الكامل
2022
Wang, Meng | Duan, Yusen | Zhang, Zhuozhi | Huo, Juntao | Huang, Yu | Fu, Qingyan | Wang, Tao | Cao, Junji | Lee, Shun-cheng
Traffic contributes to fine particulate matter (PM₂.₅) in the atmosphere through engine exhaust emissions and road dust generation. However, the evolution of traffic related PM₂.₅ emission over recent years remains unclear, especially when various efforts to reduce emission e.g., aftertreatment technologies and high emission standards from China IV to China V, have been implemented. In this study, hourly elemental carbon (EC), a marker of primary engine exhaust emissions, and trace element of calcium (Ca), a marker of road dust, were measured at a nearby highway sampling site in Shanghai from 2016 to 2019. A random forest-based machine learning algorithm was applied to decouple the influences of meteorological variables on the measured EC and Ca, revealing the deweathered trend in exhaust emissions and road dust. After meteorological normalization, we showed that non-exhaust emissions, i.e., road dust from traffic, increased their fractional contribution to PM₂.₅ over recent years. In particular, road dust was found to be more important, as revealed by the deweathered trend of Ca fraction in PM₂.₅, increasing at 6.1% year⁻¹, more than twice that of EC (2.9% year⁻¹). This study suggests that while various efforts have been successful in reducing vehicular exhaust emissions, road dust will not abate at a similar rate. The results of this study provide insights into the trend of traffic-related emissions over recent years based on high temporal resolution monitoring data, with important implications for policymaking.
اظهر المزيد [+] اقل [-]Targeting mitochondrial permeability transition pore ameliorates PM2.5-induced mitochondrial dysfunction in airway epithelial cells النص الكامل
2022
Liang, Yingmin | Chu, Pak Hin | Tian, Linwei | Ho, Kin Fai | Ip, Mary Sau-man | Mak, Judith Choi Wo
Particulate matter with aerodynamic diameter not larger than 2.5 μm (PM₂.₅) escalated the risk of respiratory diseases. Mitochondrial dysfunction may play a pivotal role in PM₂.₅-induced airway injury. However, the potential effect of PM₂.₅ on mitochondrial permeability transition pore (mPTP)-related airway injury is still unknown. This study aimed to investigate the role of mPTP in PM₂.₅-induced mitochondrial dysfunction in airway epithelial cells in vitro. PM₂.₅ significantly reduced cell viability and caused apoptosis in BEAS-2B cells. We also found PM₂.₅ caused cellular and mitochondrial morphological alterations, evidenced by the disappearance of mitochondrial cristae, mitochondrial swelling, and the rupture of the outer mitochondrial membrane. PM₂.₅ induced mPTP opening via upregulation of voltage-dependent anion-selective channel (VDAC), leading to deprivation of mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) generation and intracellular calcium level. PM₂.₅ suppressed mitochondrial respiratory function by reducing basal and maximal respiration, and ATP production. The mPTP targeting compounds cyclosporin A [CsA; a potent inhibitor of cyclophilin D (CypD)] and VBIT-12 (a selective VDAC1 inhibitor) significantly inhibited PM₂.₅-induced mPTP opening and apoptosis, and preserved mitochondrial function by restoring mitochondrial membrane potential, reducing mitochondrial ROS generation and intracellular calcium content, and maintaining mitochondrial respiration function. Our data further demonstrated that PM₂.₅ caused reduction in nuclear expressions of PPARγ and PGC-1α, which were reversed in the presence of CsA. These findings suggest that mPTP might be a potential therapeutic target in the treatment of PM₂.₅-induced airway injury.
اظهر المزيد [+] اقل [-]Glycine ameliorates MBP-induced meiotic abnormalities and apoptosis by regulating mitochondrial-endoplasmic reticulum interactions in porcine oocytes النص الكامل
2022
Gao, Lepeng | Zhang, Chang | Yu, Sicong | Liu, Shuang | Wang, Guoxia | Lan, Hainan | Zheng, Xin | Li, Suo
Monobutyl phthalate (MBP) is the main metabolite of dibutyl phthalate (DBP) in vivo. MBP has a stable structure, can continuously accumulate in living organisms, and has the potentially to harm animal and human reproductive function. In the ovarian follicle microenvironment, MBP may lead to defects in follicular development and steroid production, abnormal meiotic maturation, impaired ovarian function and other reproductive deficits. In this study, SMART-seq was used to investigate the effects of MBP exposure on the in vitro maturation (IVM) and development of porcine oocytes. The results showed that differentially expressed genes after MBP exposure were enriched in the biological processes cytoskeleton, cell apoptosis, endoplasmic reticulum (ER) and mitochondria. Glycine (Gly) improved the developmental potential of porcine oocytes by regulating mitochondrial and ER function. The effect of Gly in protecting oocytes against MBP-induced damage was studied. The results showed that the addition of Gly significantly decreased the rate of MBP-induced spindle abnormalities, decreased the frequency of MBP-induced mitochondria-associated ER membrane (MAM) interactions, and downregulated the protein and gene expression of the linkage molecules Mitofusin 1 (MFN1) and Mitofusin 2 (MFN2) in the MAM. Additionally, treatment with Gly restored the distribution of the 1,4,5-triphosphate receptor 1 (IP₃R1) and voltage-dependent anion channel 1 (VDAC1), further decreasing the intracellular free calcium concentration ([Ca²⁺]ᵢ) levels and mitochondrial Ca²⁺ ([Ca²⁺]ₘ) , increasing the ER Ca²⁺ ([Ca²⁺]ER) levels, and thus significantly increasing the ER levels and mitochondrial membrane potential (ΔΨ m). Gly also decreased the levels of reactive oxygen species (ROS) and increased the levels of Glutathione (GSH), oocyte apoptosis-related indicators (Caspase-3 activity and Annexin V) and oocyte apoptosis-related genes (BAX, Caspase 3 and AIFM1). Our results suggest that Gly can ameliorate microtubule cytoskeleton abnormalities and improve oocyte maturation by reducing the defective mitochondrial–ER interactions caused by MBP exposure in vitro.
اظهر المزيد [+] اقل [-]Organic aerosol compositions and source estimation by molecular tracers in Dushanbe, Tajikistan النص الكامل
2022
Chen, Pengfei | Kang, Shichang | Zhang, Lanxin | Abdullaev, Sabur F. | Wan, Xin | Zheng, Huijun | Maslov, Vladimir A. | Abdyzhapar uulu, Salamat | Safarov, Mustafo S. | Tripathee, Lekhendra | Li, Yizhong
To elucidate the molecular composition and sources of organic aerosols in Central Asia, carbonaceous compounds, major ions, and 15 organic molecular tracers of total suspended particulates (TSP) were analyzed from September 2018 to August 2019 in Dushanbe, Tajikistan. Extremely high TSP concentrations (annual mean ± std: 211 ± 131 μg m⁻³) were observed, particularly during summer (seasonal mean ± std: 333 ± 183 μg m⁻³). Organic carbon (OC: 11.9 ± 7.0 μg m⁻³) and elemental carbon (EC: 5.1 ± 2.2 μg m⁻³) exhibited distinct seasonal variations from TSP, with the highest values occurring in winter. A high concentration of Ca²⁺ was observed (11.9 ± 9.2 μg m⁻³), accounting for 50.8% of the total ions and reflecting the considerable influence of dust on aerosols. Among the measured organic molecular tracers, levoglucosan was the predominant compound (632 ± 770 ng m⁻³), and its concentration correlated significantly with OC and EC during the study period. These findings highlight biomass burning (BB) as an important contributor to the particulate air pollution in Dushanbe. High ratios of levoglucosan to mannosan, and syringic acid to vanillic acid suggest that mixed hardwood and herbaceous plants were the main burning materials in the area, with softwood being a minor one. According to the diagnostic tracer ratio, OC derived from BB constituted a large fraction of the primary OC (POC) in ambient aerosols, accounting for an annual mean of nearly 30% and reaching 63% in winter. The annual contribution of fungal spores to POC was 10%, with a maximum of 16% in spring. Measurements of plant debris, accounting for 3% of POC, divulged that these have the same variation as fungal spores.
اظهر المزيد [+] اقل [-]