خيارات البحث
النتائج 1 - 10 من 196
Erosion effects of air pollution on needle surfaces.
1986
Karhu M. | Huttunen S.
Forest health research on a natural air pollution gradient in the San Bernardino Mountains, Southern California
2002
Arbaugh, M.J. | Alonso, R. | Bytnerowicz, A. (USDA Forest Service, Riverside (USA). Pacific Southwest Research Station)
Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation and increase carbon sequestration rates in heavily polluted forests
اظهر المزيد [+] اقل [-]Separating emissions and meteorological impacts on peak ozone concentrations in Southern California using generalized additive modeling
2022
Gao, Ziqi | Ivey, Cesunica E. | Blanchard, Charles L. | Do, Khanh | Lee, Sang-Mi | Russell, Armistead G.
Ozone levels have been declining in the Los Angeles, CA, USA area for the last four decades, but there was a recent uptick in the 4th highest daily maximum 8-h (MDA8) ozone concentrations from 2014 to 2018 despite continued reductions in the estimated precursor emissions. In this study, we assess the emissions and meteorological impacts on the 4th highest MDA8 ozone concentrations to better understand the factors affecting the observed MDA8 ozone using a two-step generalized additive model (GAM)/least squares approach applied to the South Coast Air Basin (SoCAB) for the 1990 to 2019 period. The GAM model includes emissions, meteorological factors, large-scale climate variables, date, and the interactions between meteorology and emissions. A least squares method was applied to the GAM output to better capture the 4th highest MDA8 ozone. The resulting two-step model had an R² of 0.98 and a slope of 1 between the observed and predicted 4th highest MDA8 ozone. Emissions and the interactions between the maximum temperature and emissions explain most of the variation in the peak MDA8 ozone concentrations. Declining emissions have lowered the 4th highest MDA8 ozone concentration. Meteorology explains the higher than expected 4th-high, ozone levels observed in 2014–2018, indicating that meteorology was a stronger forcer than the continued reductions in emissions during that time period. The model was applied to estimate future ozone levels. Meteorology developed from climate modeling of the representative concentration pathway (RCP) scenarios, and two sets of emissions were used in the application. The modeling results indicated climate trends will push ozone levels slightly higher if no further emissions reductions are realized and that of two emissions trajectories modeled, the more stringent is required to reliably meet the federal ozone standard given annual meteorological variability.
اظهر المزيد [+] اقل [-]Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction
2022
Geyer, Roland | Gavigan, Jenna | Jackson, Alexis M. | Saccomanno, Vienna R. | Suh, Sangwon | Gleason, Mary G.
Synthetic microfibers have been identified as the most prevalent type of microplastic in samples from aquatic, atmospheric, and terrestrial environments across the globe. Apparel washing has shown to be a major source of microfiber pollution. We used California as a case study to estimate the magnitude and fate of microfiber emissions, and to evaluate potential mitigation approaches. First, we quantified synthetic microfiber emissions and fate from apparel washing in California by developing a material flow model which connects California-specific data on synthetic fiber consumption, apparel washing, microfiber generation, and wastewater and biosolid management practices. Next, we used the model to assess the effectiveness of different interventions to reduce microfiber emissions to natural environments. We estimate that in 2019 as much as 2.2 kilotons (kt) of synthetic microfibers were generated by apparel washing in California, a 26% increase since 2008. The majority entered terrestrial environments (1.6 kt), followed by landfills (0.4 kt), waterbodies (0.1 kt), and incineration (0.1 kt). California's wastewater treatment network was estimated to divert 95% of microfibers from waterbodies, mainly to terrestrial environments and primarily via land application of biosolids. Our analysis also reveals that application of biosolids on agricultural lands facilitates a directional flow of microfibers from higher-income urban counties to lower-income rural communities. Without interventions, annual synthetic microfiber emissions to California's natural environments are expected to increase by 17% to 2.1 kt by 2026. Further increasing the microfiber retention efficiency at the wastewater treatment plant would increase emissions to terrestrial environments, which suggests that microfibers should be removed before entering the wastewater system. In our model, full adoption of in-line filters in washing machines decreased annual synthetic microfiber emissions to natural environments by 79% to 0.5 kt and offered the largest reduction of all modeled scenarios.
اظهر المزيد [+] اقل [-]PM2.5 composition and sources in the San Joaquin Valley of California: A long-term study using ToF-ACSM with the capture vaporizer
2022
Sun, Peng | Farley, Ryan N. | Li, Lijuan | Srivastava, Deepchandra | Niedek, Christopher R. | Li, Jianjun | Wang, Ningxin | Cappa, Christopher D. | Pusede, Sally E. | Yu, Zhenhong | Croteau, Philip | Zhang, Qi
The San Joaquin Valley (SJV) of California has suffered persistent particulate matter (PM) pollution despite many years of control efforts. To further understand the chemical drivers of this problem and to support the development of State Implementation Plan for PM, a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) outfitted with a PM₂.₅ lens and a capture vaporizer has been deployed at the Fresno-Garland air monitoring site of the California Air Resource Board (CARB) since Oct. 2018. The instrument measured non-refractory species in PM₂.₅ continuously at 10-min resolution. In this study, the data acquired from Oct. 2018 to May 2019 were analyzed to investigate the chemical characteristics, sources and atmospheric processes of PM₂.₅ in the SJV. Comparisons of the ToF-ACSM measurement with various co-located aerosol instruments show good agreements. The inter-comparisons indicated that PM₂.₅ in Fresno was dominated by submicron particles during the winter whereas refractory species accounted for a major fraction of PM₂.₅ mass during the autumn associated with elevated PM₁₀ loadings. A rolling window positive matrix factorization analysis was applied to the organic aerosol (OA) mass spectra using the Multilinear Engine (ME-2) algorithm. Three distinct OA sources were identified, including vehicle emissions, local and regional biomass burning, and formation of oxygenated species. There were significant seasonal variations in PM₂.₅ composition and sources. During the winter, residential wood burning and oxidation of nitrogen oxides were major contributors to the occurrence of haze episodes with PM₂.₅ dominated by biomass burning OA and nitrate. In autumn, agricultural activities and wildfires were found to be the main cause of PM pollution. PM₂.₅ concentrations decreased significantly after spring and were dominated by oxygenated OA during March to May. Our results highlight the importance of using seasonally dependent control strategies to mitigate PM pollution in the SJV.
اظهر المزيد [+] اقل [-]Transboundary transport of ozone pollution to a US border region: A case study of Yuma
2021
Qu, Zhen | Wu, Dien | Henze, Daven K. | Li, Yi | Sonenberg, Mike | Mao, Feng
High concentrations of ground-level ozone affect human health, plants, and animals. Reducing ozone pollution in rural regions, where local emissions are already low, poses challenge. We use meteorological back-trajectories, air quality model sensitivity analysis, and satellite remote sensing data to investigate the ozone sources in Yuma, Arizona and find strong international influences from Northern Mexico on 12 out of 16 ozone exceedance days. We find that such exceedances could not be mitigated by reducing emissions in Arizona; complete removal of state emissions would reduce the maximum daily 8-h average (MDA8) ozone in Yuma by only 0.7% on exceeding days. In contrast, emissions in Mexico are estimated to contribute to 11% of the ozone during these exceedances, and their reduction would reduce MDA8 ozone in Yuma to below the standard. Using satellite-based remote sensing measurements, we find that emissions of nitrogen oxides (NOₓ, a key photochemical precursor of ozone) increase slightly in Mexico from 2005 to 2016, opposite to decreases shown in the bottom-up inventory. In comparison, a decrease of NOₓ emissions in the US and meteorological factors lead to an overall of summer mean and annual MDA8 ozone in Yuma (by ∼1–4% and ∼3%, respectively). Analysis of meteorological back-trajectories also shows similar transboundary transport of ozone at the US-Mexico border in California and New Mexico, where strong influences from Northern Mexico coincide with 11 out of 17 and 6 out of 8 ozone exceedances. 2020 is the final year of the U.S.-Mexico Border 2020 Program, which aimed to reduce pollution at border regions of the US and Mexico. Our results indicate the importance of sustaining a substantial cooperative program to improve air quality at the border area.
اظهر المزيد [+] اقل [-]Mercury exposure in mammalian mesopredators inhabiting a brackish marsh
2021
Peterson, Sarah H. | Ackerman, Joshua T. | Hartman, C Alex | Casazza, Michael L. | Feldheim, Cliff L. | Herzog, Mark P.
Bioaccumulation of environmental contaminants in mammalian predators can serve as an indicator of ecosystem health. We examined mercury concentrations of raccoons (Procyon lotor; n = 37 individuals) and striped skunks (Mephitis mephitis; n = 87 individuals) in Suisun Marsh, California, a large brackish marsh that is characterized by contiguous tracts of tidal marsh and seasonally impounded wetlands. Mean (standard error; range) total mercury concentrations in adult hair grown from 2015 to 2018 were 28.50 μg/g dw (3.05 μg/g dw; range: 4.46–81.01 μg/g dw) in raccoons and 4.85 μg/g dw (0.54 μg/g dw; range: 1.53–27.02 μg/g dw) in striped skunks. We reviewed mammalian hair mercury concentrations in the literature and raccoon mercury concentrations in Suisun Marsh were among the highest observed for wild mammals. Although striped skunk hair mercury concentrations were 83% lower than raccoons, they were higher than proposed background levels for mercury in mesopredator hair (1–5 μg/g). Hair mercury concentrations in skunks and raccoons were not related to animal size, but mercury concentrations were higher in skunks in poorer body condition. Large inter-annual differences in hair mercury concentrations suggest that methylmercury exposure to mammalian predators varied among years. Mercury concentrations of raccoon hair grown in 2017 were 2.7 times greater than hair grown in 2015, 1.7 times greater than hair grown in 2016, and 1.6 times greater than hair grown in 2018. Annual mean raccoon and skunk hair mercury concentrations increased with wetland habitat area. Furthermore, during 2017, raccoon hair mercury concentrations increased with the proportion of raccoon home ranges that was wetted habitat, as quantified using global positioning system (GPS) collars. The elevated mercury concentrations we observed in raccoons and skunks suggest that other wildlife at similar or higher trophic positions may also be exposed to elevated methylmercury bioaccumulation in brackish marshes.
اظهر المزيد [+] اقل [-]Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data
2021
Bi, Jianzhao | Wallace, Lance A. | Sarnat, Jeremy A. | Liu, Yang
Epidemiological research on the adverse health outcomes due to PM₂.₅ exposure frequently relies on measurements from regulatory air quality monitors to provide ambient exposure estimates, whereas personal PM₂.₅ exposure may deviate from ambient concentrations due to outdoor infiltration and contributions from indoor sources. Research in quantifying infiltration factors (Fᵢₙf), the fraction of outdoor PM₂.₅ that infiltrates indoors, has been historically limited in space and time due to the high costs of monitor deployment and maintenance. Recently, the growth of openly accessible, citizen-based PM₂.₅ measurements provides an unprecedented opportunity to characterize Fᵢₙf at large spatiotemporal scales. In this analysis, 91 consumer-grade PurpleAir indoor/outdoor monitor pairs were identified in California (41 residential houses and 50 public/commercial buildings) during a 20-month period with around 650000 h of paired PM₂.₅ measurements. An empirical method was developed based on local polynomial regression to estimate site-specific Fᵢₙf. The estimated site-specific Fᵢₙf had a mean of 0.26 (25ᵗʰ, 75ᵗʰ percentiles: [0.15, 0.34]) with a mean bootstrap standard deviation of 0.04. The Fᵢₙf estimates were toward the lower end of those reported previously. A threshold of ambient PM₂.₅ concentration, approximately 30 μg/m³, below which indoor sources contributed substantially to personal exposures, was also identified. The quantified relationship between indoor source contributions and ambient PM₂.₅ concentrations could serve as a metric of exposure errors when using outdoor monitors as an exposure proxy (without considering indoor-generated PM₂.₅), which may be of interest to epidemiological research. The proposed method can be generalized to larger geographical areas to better quantify PM₂.₅ outdoor infiltration and personal exposure.
اظهر المزيد [+] اقل [-]Factors influencing methylmercury contamination of black bass from California reservoirs
2019
Melwani, Aroon R. | Negrey, John | Heim, Wes A. | Coale, Kenneth H. | Stephenson, Mark D. | Davis, Jay A.
Understanding how mercury (Hg) accumulates in the aquatic food web requires information on the factors driving methylmercury (MeHg) contamination. This paper employs data on MeHg in muscle tissue of three black bass species (Largemouth Bass, Spotted Bass, and Smallmouth Bass) sampled from 21 reservoirs in California. During a two-year period, reservoirs were sampled for total Hg in sediment, total Hg and MeHg in water, chlorophyll a, organic carbon, sulfate, dissolved oxygen, pH, conductivity, and temperature. These data, combined with land-use statistics and reservoir morphometry, were used to investigate relationships to size-normalized black bass MeHg concentrations. Significant correlations to black bass MeHg were observed for total Hg in sediment, total Hg and MeHg in surface water, and forested area. A multivariate statistical model predicted Largemouth Bass MeHg as a function of total Hg in sediment, MeHg in surface water, specific conductivity, total Hg in soils, and forested area. Comparison to historical reservoir sediment data suggested there has been no significant decline in sediment total Hg at five northern California reservoirs during the past 20 years. Overall, total Hg in sediment was indicated as the most influential factor associated with black bass MeHg contamination. The results of this study improve understanding of how MeHg varies in California reservoirs and the factors that correlate with fish MeHg contamination.
اظهر المزيد [+] اقل [-]Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca?
2018
Heim, Jennifer R. | Weston, Donald P. | Major, Kaley | Poynton, Helen | Huff Hartz, Kara E. | Lydy, Michael J.
Pyrethroid-resistant Hyalella azteca with voltage-gated sodium channel mutations have been identified at multiple locations throughout California. In December 2013, H. azteca were collected from Mosher Slough in Stockton, CA, USA, a site with reported pyrethroid (primarily bifenthrin and cyfluthrin) sediment concentrations approximately twice the 10-d LC50 for laboratory-cultured H. azteca. These H. azteca were shipped to Southern Illinois University Carbondale and have been maintained in pyrethroid-free culture since collection. Even after 22 months in culture, resistant animals had approximately 53 times higher tolerance to permethrin than non-resistant laboratory-cultured H. azteca. Resistant animals held in culture also lacked the wild-type allele at the L925 locus, and had non-synonymous substitutions that resulted in either a leucine-isoleucine or leucine-valine substitution. Additionally, animals collected from the same site nearly three years later were again resistant to the pyrethroid permethrin. When resistant animals were compared to non-resistant animals, they showed lower reproductive capacity, lower upper thermal tolerance, and the data suggested greater sensitivity to, 4, 4′-dichlorodiphenyltrichloroethane (DDT), copper (II) sulfate, and sodium chloride. Further testing of the greater heat and sodium chloride sensitivity of the resistant animals showed these effects to be unrelated to clade association. Fitness costs associated with resistance to pyrethroids are well documented in pest species (including mosquitoes, peach-potato aphids, and codling moths) and we believe that H. azteca collected from Mosher Slough also have fitness costs associated with the developed resistance.
اظهر المزيد [+] اقل [-]