خيارات البحث
النتائج 1 - 10 من 15
Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.) النص الكامل
2020
Duan, Dechao | Tong, Jianhao | Xu, Qiao | Dai, Luying | Ye, Jien | Wu, Hanxin | Xu, Chen | Shi, Jiyan
Though the interaction between humic acid (HA) and heavy metals has been widely reported, the effects of HA on the toxicity of heavy metals to plants are still in debate. In this study, the regulation mechanisms of HA on Pb stress in tea plant (Camellia sinensis L.) was investigated through hydroponic experiments, and the experimental results were explained by using transmission electron microscope (TEM), scanning transmission X-ray microscopes (STXM) and isobaric tags for relative and absolute quantitation (iTRAQ) differential proteomics. Significant alleviation of Pb stress was found with HA coexistence. TEM results showed that HA greatly mitigated the damage of cells caused by Pb stress. Compared with sole Pb treatment, the addition of HA increased the contents of pectin and pectic acid in the cell wall by 10.5% and 30.5%, while arabinose (Ara) and galactose (Gal) decreased by 20.5% and 15.9%, respectively, which were beneficial for increasing Pb adsorption capacity of the cell wall and promoting cell elongation. Moreover, iTRAQ differential proteomics analysis proved that HA strengthened the antioxidant system, promoted the synthesis of cell wall, and stabilized protein and sulfur-containing substance metabolism in molecular level. Notably, the concentration of calcium (Ca) in the cell wall of HA coexistence treatment was 47.4% higher than Pb treatment. STXM results also indicated that the distribution of Ca in the cell wall was restored with the presence of HA. This might promote the formation of the egg-box model, thus alleviating Pb stress in cells. Our results reveal the regulation mechanisms of HA on Pb detoxification in plants and provide useful information for improving the safety of agricultural products.
اظهر المزيد [+] اقل [-]The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions النص الكامل
2021
Luo, Jinlei | Ni, Dejiang | Li, Chunlei | Du, Yaru | Chen, Yuqiong
Tea plant is capable of hyper-accumulating fluoride (F) in leaves, suggesting drinking tea may cause excessive F intake in our body and threaten the health. This study investigated the changes in the structure, composition, and F content in the leaf cell wall of the tea (Camellia sinensis) under different F conditions to demonstrate the role of cell wall in F enrichment in tea plants. The cell wall was shown as the main part for F accumulation (67%–92%), with most of F distributed in the pectin fraction (56%–71%). With increasing F concentration, a significant increase (p < 0.05) was observed in the F content of cell wall and its components, the level of cell wall metal ions (i.e. Cu, Mg, Zn, Al, Ca, Ba, Mn), as well as the content of total cell wall materials, cellulose, and pectin. Meanwhile, the level of Cu, Mg, Zn, pectin, and cellulose was significantly positively correlated with the F content in the leaf cell wall. F addition was shown to increase the fluorescence intensity of LM19 and 2F4 antibody-labeled low-methylesterified homogalacturonans (HGs), while decrease LM20-labeled high-methylesterified HGs, coupled with an increase in the activity and gene expression of pectin methyl esterases (PMEs) in tea leaves. All these results suggest that F addition can increase pectin content and demethylesterification, leading to increased absorption of metal cations and chelation of F in the cell wall through the action of metal ions.
اظهر المزيد [+] اقل [-]Selenium treatment modulates fluoride distribution and mitigates fluoride stress in tea plant (Camellia sinensis (L.) O. Kuntze) النص الكامل
2020
Niu, Huiliang | Zhan, Kui | Xu, Wei | Peng, Chuanyi | Hou, Chaoyuan | Li, Yeyun | Hou, Ruyan | Wan, Xiaochun | Cai, Huimei
Tea plants (Camellia sinensis (L.) O. Kuntze) can hyperaccumulate fluoride (F). The accumulation of F in tea leaves may induce serious health problems in tea consumers. It has been reported that selenium (Se) could reduce the accumulation of heavy metals in plants. Thus, the aim of this study was to investigate whether exogenous Se could reduce F accumulation in tea plant. The results showed that Se treatment could decrease F content in tea leaves, increase F accumulation in roots, decrease the proportion of water-soluble F in tea leaves and increase the Se content. Low F levels promoted the accumulation of Se in tea plants. Se treatment could modulate F-induced oxidative injury by decreasing malondialdehyde level and increasing the activities of superoxide dismutase, peroxidase and catalase. Moreover, Se inhibited F-induced increase in leaf iron, calcium, aluminum, leaf and root magnesium and lead contents. These results showed that Se application could decrease F content and increase Se content in tea leaves, which may be served as a novel strategy for production of healthy tea.
اظهر المزيد [+] اقل [-]Fluoride concentrations in traditional and herbal teas: Health risk assessment النص الكامل
2017
Das, Suchismita | de Oliveira, Letuzia M. | da Silva, Evandro | Liu, Yungen | Ma, Lena Q.
Traditional tea (Camellia sinensis) and herbal tea are being consumed across the world. However, long term consumption of tea can increase the chances of fluorosis owing to the presence of fluoride (F) in teas. Therefore, it is imperative to assess the health risk associated with tea consumption. The main objectives of this study were to: 1) estimate total F in 47 popular teas, including traditional and herbal teas and F concentrations in 1% (w/v) infusion of 5 min, and 2) assess the exposure risks of F from tea consumption in children and adults. The data showed that total F was the least in herbal teas (33–102 mg/kg) and their infusions (0.06–0.69 mg/L) compared to traditional teas (296–1112 mg/kg) and their infusions (1.47–6.9 mg/L). During tea infusion, 6–96% and 18–99% of the F was released into the water from herbal and traditional teas, respectively. Ten samples of traditional teas, including five green teas had chronic daily intake (CDI) values of F > 0.05 mg/d/kg bw, the stipulated permissible limits of F intake from all sources. Although the F from teas posed no immediate health hazards with hazard quotient <1, some tea samples could potentially contribute >4 mg F/d, thereby adding to the overall F burden. Therefore, together with F from food and water sources, daily F consumptions from teas might increase its health risks to humans. So, caution should be excised when drinking teas containing high F.
اظهر المزيد [+] اقل [-]Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion
1999
Fung, K.F. | Zhang, Z.Q. | Wong, J.W.C. | Wong, M.H. (Institute for Natural Resources and Waste Management, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China))
Nitrogen addition exerts a stronger effect than elevated temperature on soil available nitrogen and relation to soil microbial properties in the rhizosphere of Camellia sinensis L. seedlings النص الكامل
2022
As the global climate changes, elevated atmospheric temperature and nitrogen (N) deposition co-occur in natural ecosystems, which affects rhizosphere soil nutrient by altering allocation of roots and its availability to soil microorganism. Elevated temperature in combination with N deposition is expected to affect soil available N and its relation to microbial properties, but this issue has not been extensively examined. Here, we investigated soil available N and its relation to microbial properties in rhizosphere of Camellia sinensis L. seedlings exposed to elevated temperature using a passive warming device in combination with N-added soil. Elevated temperature did not significantly affect soil pH, total organic carbon (TOC), total nitrogen (TN), the ratio of carbon and nitrogen (C:N ratio), total phosphorus (TP), available N ((N in ammonium (NH₄⁺-N) and N in nitrate (NO₃–-N)) (NH₄⁺-N + NO₃–-N)/TN, α-glucosidase (αG), β-glucosidase (βG), cellobiohydrolase (CBH), N-acetyl-glucosaminidase (NAG), and phenol oxidase (PPO) activities, while significantly stimulated root total length of tea seedlings (3.9%), root dry biomass (10.2%), soil microbial biomass carbon (MBC) (7.4%), microbial biomass nitrogen (MBN) (8.6%), and acid phosphatase (ACP) (8.8%). While N addition significantly (p < 0.05) stimulated root dry biomass of tea seedlings (14.1%), root total length (6.2%), root average diameter (6.7%), soil TN, available N, (NH₄⁺-N + NO₃–-N)/TN, and MBN under elevated temperature. Soil aG, βG, CBH, and ACP activity increase significantly (p < 0.05) under elevated temperature + N relative to elevated temperature alone. Generally, N addition led to increased available nitrogen and microbial properties in rhizosphere soil of tea seedlings exposed to elevated temperature by stimulating root properties, soil nitrogen, microbial biomass N, and enzyme activity. Redundancy analysis and Pearson correlation analysis suggested that N addition lead to higher correlation between soil available N and microbial properties exposed to elevated temperature. Our results indicated nitrogen addition exerts a stronger effect than elevated temperature on soil fertility and microbiological cycle in the rhizosphere of Camellia sinensis L. seedlings. The conclusion helps us understand the response mechanism of soil rhizosphere microenvironment to N deposition under global warming scenarios.
اظهر المزيد [+] اقل [-]Waste black tea leaves (Camelia sinensis) as a sustainable source of tannin natural colorant for bio-treated silk dyeing النص الكامل
2022
Hayat, Tayyab | Adeel, Shahid | Fazal-ur-Rehman, | Batool, Fatima | Amin, Nimra | Aḥmad, Tanvīr | Ozomay, Meral
Environmentally friendly products are the need of the hour, particularly in this pandemic situation because synthetic products need such toxic chemicals for their formulation and finishing which are carcinogenic for the globe. The current study is the utilization of waste black tea leaf (BT)–based tannin brown natural colorant for silk dyeing using microwave treatment. Dye (tannin) has been isolated in various media before and after microwave treatment up to 6 min and applied at various conditions. It has been found that 30 mL of aqueous extract of 3.0 pH obtained from 6.0 g of powder containing 3.0 g/100 mL of salt as an exhausting agent after microwave treatment for 5 min, when employed at 55 °C for 45 min, has given good color yield onto silk. Iron (3%) and acacia extract (2%) as pre-chemical and bio mordant, iron (2%) and pomegranate extract (2%) as post chemical and bio-mordant, and Al (3 %) and pomegranate extract (3%) as meta chemical and bio-mordant have given new shades with good to excellent fastness ratings. It is inferred that waste black tea leaves (BTs) in an aqueous medium have an excellent potential to serve as a source of natural tannin brown dye for the coloration of surface-modified silk fabrics under the influence of cost, energy, and time-effective microwave treatment. Additionally, the utilization of a low amount of sustainable chemical and bio-mordants has valorized the dyeing of silk by developing soothing and sustainable shades with good fastness properties.
اظهر المزيد [+] اقل [-]Human exposure to fluoride from tea (Camellia sinensis) in a volcanic region—Canary Islands, Spain النص الكامل
2020
Rodríguez, Inmaculada | Burgos, Antonio | Rubio, Carmen | Gutiérrez, Angel J. | Paz, Soraya | Rodrigues da Silva Júnior, Flavio M. | Hardisson, Arturo | Revert, Consuelo
Fluoride is highly present in the environment, especially in water and its derivatives. Excessive fluoride contribution to diet poses a health risk. Tea leaves accumulate fluoride and the consumption of tea (Camellia sinensis) could pose a risk to human by the excessive fluoride intake. Ninety tea samples were analyzed by potentiometry using a selective fluoride ion electrode. Mixed tea samples (2.82 ± 1.11 mg/L) and black tea samples (2.28 ± 0.79 mg/L) recorded the highest fluoride levels. The contribution of drinking water is important for increasing fluoride levels in teas. The daily consumption of two cups (250 mL per cup) of mixed and black teas prepared with La Laguna tap water does pose a health risk for children (4–8 years old) because of the high contribution percentages (74.4% and 63.6%, respectively) of the Tolerable Upper Intake Level set in 2.5 mg/day by the EFSA (European Food Safety Authority). A minor consumption in children (4–8 years old) and adults during pregnancy is advisable.
اظهر المزيد [+] اقل [-]Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China النص الكامل
2019
Xie, Shaowen | Feng, Hanxiao | Yang, Fen | Zhao, Zhide | Hu, Xuedi | Wei, Chaoyang | Liang, Tao | Li, Haitao | Geng, Yuanbo
Tea tree (Camellia sinensis) is a valuable and popular cash crop widely planted in tropical and subtropical areas of China. To increase tea yield and quality, high rates of chemical fertilizer and pesticide application have generally been used; however, increasing usage of fertilizers and pesticides does not always proportionally increase tea yield. Indeed, excessive nutrient inputs may cause serious agricultural non-point source pollution. A pilot study on dual reduction in fertilizers and pesticides was conducted in a green tea plantation in Shaoxing, Zhejiang Province, to explore the environmental effects of different fertilizer and pesticide managements (e.g., changes in soil properties and nutrient accumulation, nutrient inputs in runoff water) and to reveal the potential effects of the interaction of these two managements on tea yield and quality. Traditional formulas and rates of chemical fertilizers and pesticides were used as the baselines (100% usage); replacement with different proportions of organic fertilizer (i.e., 20%, 50% and 80%) and direct pesticide reductions of 30%, 50%, and 80% were tested. The results showed that proper management with organic fertilizer replacement can effectively mitigate soil acidification and nutrient deficiency in tea plantations, increase soil organic matter (OM) and ammonium nitrogen (NH₄-N) contents, and promote tea yield and quality. Moreover, managements with organic fertilizer replacement can markedly reduce the inputs of ammonium nitrogen (NH₄-N), nitrate nitrogen (NO₃-N), total phosphorus (TP), and total potassium (TK) in runoff water. Soil nutrient accumulation was the highest while the runoff nutrient input was the lowest at 20% organic fertilizer replacement. Experimental spraying of bifenthrin and chlorfenapyr revealed that these pesticides were mainly trapped by the tea leaves and rarely entered the soil or water bodies. Although pesticide reduction treatments can effectively decrease pesticide residues in tea leaves, differences in pesticide residue between various treatments were not obvious due to the rapid degradation of pesticides. Multivariate analysis of variance showed that 50% of the variation in tea yield, bud density, polyphenols, and caffeine can be explained by interactions between fertilizers and pesticides. Combinations of 20% or 50% organic fertilizer replacement and 30% or 50% pesticide application reduction are appropriate for both mitigating nutrient loss and balancing tea yield and quality, especially the combination of 50% organic fertilizer replacement and 50% pesticide reduction, which produced the best results. This study demonstrates the feasibility of dual reductions in fertilizers and pesticides for mitigating environmental hazards while maintaining the yield and quality of tea.
اظهر المزيد [+] اقل [-]Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. “Shuchazao”) النص الكامل
2018
Cao, De-ju | Yang, Xun | Geng, Geng | Wan, Xiao-chun | Ma, Ru-xiao | Zhang, Qian | Liang, Yue-gan
A hydroponic experiment was performed to investigate the Cd absorption and subcellular distribution in tea plant, Camellia sinensis. Increased Cd accumulation potential was observed in the tea plant in a Cd-enriched environment, but most of the Cd was absorbed by the roots of C. sinensis. The Cd in all the root fractions was mostly distributed in the soluble fraction, followed by the cell wall fraction. By contrast, the Cd was least distributed in the organelle fraction. The adsorption of Cd onto the C. sinensis roots was described well by the Langmuir isotherm model than the Freundlich isotherm. Most of the Cd (38.6 to 59.4%) was integrated with pectates and proteins in the roots and leaves. Fourier transform infrared spectroscopy (FTIR) analysis showed that small molecular organic substances, such as amino acids, organic acids, and carbohydrates with N–H, C=O, C–N, and O–H functional groups in the roots, bonded with Cd(II). The Cd accumulation in the C. sinensis leaves occurred in the cell wall and organelle fractions. C. sinensis has great capability to transport Cd, thereby indicating pollution risk. The metal homeostasis of Fe, Mn, Ca, and Mg in C. sinensis was affected when the Cd concentration was 1.0–15.0 mg/L.
اظهر المزيد [+] اقل [-]