خيارات البحث
النتائج 1 - 2 من 2
Powdered activated carbon (PAC) amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions
2021
Pagnozzi, Giovanna | Carroll, Sean | Reible, Danny D. | Millerick, Kayleigh
Capping represents an efficient and well-established practice to contain polycyclic aromatic hydrocarbons (PAHs) in sediments, reduce mobility, and minimize risks. Exposure to PAHs can encourage biodegradation, which can improve the performance of capping. This study investigates biodegradation of naphthalene (a model PAH) in highly reducing, sediment-like environments with amendment of different capping materials (PAC and sand). Microcosms were prepared with sediment enrichments, sulfate as an electron acceptor, and naphthalene. Results show that PAC stimulates naphthalene biodegradation and mineralization, as indicated by production of ¹⁴CO₂ from radiolabeled naphthalene. Mineralization in PAC systems correlates with the enrichment of genera (Geobacter and Desulfovirga) previously identified to biodegrade naphthalene (Spearman’s, p < 0.05). Naphthalene decay in sand and media-free systems was not linked to biodegradation activity (ANOVA, p > 0.05), and microbial communities were correlated to biomass yields rather than metabolites. Naphthalene decay in PAC systems consists of three stages with respect to time: latent (0–88 days), exponential decay (88–210 days), and inactive (210–480 days). This study shows that PAC amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions and provides a kinetic and metagenomic characterization of systems demonstrating naphthalene decay.
اظهر المزيد [+] اقل [-]Control of internal phosphorus release from sediments using magnetic lanthanum/iron-modified bentonite as active capping material
2020
Lin, Jianwei | Zhao, Yuying | Zhan, Yanhui | Wang, Yan
The non-magnetic capping materials are difficult to be recycled from the water bodies after their application, leading to the increase in the cost of the sediment remediation. To address this issue, a capping material, i.e., magnetic lanthanum/iron-modified bentonite (M-LaFeBT) was prepared by loading lanthanum onto a magnetic iron-modified bentonite (M-FeBT) and used to control the internal phosphorus (P) loading in this study. To determine the capping efficiency and mechanism of M-LaFeBT, the impact of M-LaFeBT and M-FeBT capping on the mobilization of P in sediments was investigated, and the stabilization of P bound by the M-LaFeBT and M-FeBT capping layers was evaluated. Results showed that M-LaFeBT possessed good magnetic property with a saturated magnetization of 14.9 emu/g, and exhibited good phosphate adsorption ability with a maximum monolayer sorption capacity (QMAX) of 14.3 mg P/g at pH 7. Moreover, M-LaFeBT capping tremendously reduced the concentration of soluble reactive P (SR-P) in the overlying water (OL-water), and the reduction efficiencies were 94.7%–97.4%. Furthermore, M-LaFeBT capping significantly decreased the concentration of SR-P in the pore water and DGT (diffusive gradient in thin films)-labile P in the profile of OL-water and sediment. Additionally, most of P bound by the M-LaFeBT capping layer (approximately 77%) was stable under natural pH and reducing conditions. The phosphate adsorption ability for M-LaFeBT was much higher than that for M-FeBT, and the QMAX value for the former was 4.86 times higher than that for the latter. M-LaFeBT capping gave rise to a higher reduction of DGT-labile concentration in the profile of OL-water and sediment than M-FeBT capping. The P adsorbed by the M-LaFeBT capping layer was more stable than that by the M-FeBT capping layer. Results of this study demonstrate that M-LaFeBT is promising for utilization as an active capping material to intercept sedimentary P release into OL-water.
اظهر المزيد [+] اقل [-]