خيارات البحث
النتائج 1 - 10 من 31
Loggerhead sea turtles (Caretta caretta): A target species for monitoring litter ingested by marine organisms in the Mediterranean Sea
2017
Matiddi, Marco | Hochsheid, Sandra | Camedda, Andrea | Baini, Matteo | Cocumelli, Cristiano | Serena, Fabrizio | Tomassetti, Paolo | Travaglini, Andrea | Marra, Stefano | Campani, Tommaso | Scholl, Francesco | Mancusi, Cecilia | Amato, Ezio | Briguglio, Paolo | Maffucci, Fulvio | Fossi, Maria Cristina | Bentivegna, Flegra | de Lucia, Giuseppe Andrea
Marine litter is any persistent, manufactured or processed solid material discarded, disposed of or abandoned in the marine and coastal environment. Ingestion of marine litter can have lethal and sub-lethal effects on wildlife that accidentally ingests it, and sea turtles are particularly susceptible to this threat. The European Commission drafted the 2008/56/EC Marine Strategy Framework Directive with the aim to achieve a Good Environmental Status (GES), and the loggerhead sea turtle (Caretta caretta, Linnaeus 1758) was selected for monitoring the amount and composition of litter ingested by marine animals. An analogous decision has been made under the UNEP/MAP Barcelona Convention for the protection of the Mediterranean Sea, following the Ecosystem Approach. This work provides for the first time, two possible scenarios for the Marine Strategy Framework Directive GES, both related to “Trends in the amount and composition of litter ingested by marine animals” in the Mediterranean Sea. The study validates the use of the loggerhead turtle as target indicator for monitoring the impact of litter on marine biota and calls for immediate use of this protocol throughout the Mediterranean basin and European Region. Both GES scenarios are relevant worldwide, where sea turtles and marine litter are present, for measuring the impact of ingested plastics and developing policy strategies to reduce it. In the period between 2011 and 2014, 150 loggerhead sea turtles, found dead, were collected from the Italian Coast, West Mediterranean Sea Sub-Region. The presence of marine litter was investigated using a standardized protocol for necropsies and lab analysis. The collected items were subdivided into 4 main categories, namely, IND-Industrial plastic, USE-User plastic, RUB-Non plastic rubbish, POL-Pollutants and 14 sub-categories, to detect local diversity. Eighty-five percent of the individuals considered (n = 120) were found to have ingested an average of 1.3 ± 0.2 g of litter (dry mass) or 16 ± 3 items.
اظهر المزيد [+] اقل [-]Association between nighttime artificial light pollution and sea turtle nest density along Florida coast: A geospatial study using VIIRS remote sensing data
2018
Hu, Zhiyong | Hu, Hongda | Huang, Yuxia
Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the “Florida Statewide Nesting Beach Survey program”. We used the new generation of satellite sensor “Visible Infrared Imaging Radiometer Suite (VIIRS)” (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45° of elevation (>1.14 × 10⁻¹¹ Wm⁻²sr⁻¹). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution.
اظهر المزيد [+] اقل [-]Evidence of ingested plastics in stranded loggerhead sea turtles along the Greek coastline, East Mediterranean Sea
2020
Digka, Nikoletta | Bray, Laura | Tsangaris, Catherine | Andreanidou, Konstantina | Kasimati, Eirini | Kofidou, Evangelia | Komnenou, Anastasia | Kaberi, Helen
Plastic debris has become a major threat to the marine environment and wildlife. Sea turtles are particularly vulnerable, and are known to ingest plastic debris globally; however, information from Greek waters is still absent. In this study, 36 stranded dead loggerhead turtles (Caretta caretta) were collected from the Greek coastline area, and their gastrointestinal content was analysed for ingested plastic debris. Twenty-six individuals (72%) were found to have ingested plastic, with an average of 7.94 ± 3.85 (SE) plastic items per turtle. In total, 286 plastic items were counted and categorised by size, shape, colour, and polymer type. Fourier Transform Infrared Spectrometry revealed that polypropylene and polyethylene were the dominant polymer plastic types found. Results indicated a variation in plastic ingestion amongst life stages of the loggerhead specimens. This study provides evidence of plastic ingestion by loggerhead turtles in Greek waters.
اظهر المزيد [+] اقل [-]Two decades of monitoring in marine debris ingestion in loggerhead sea turtle, Caretta caretta, from the western Mediterranean
2019
Domènech, F. | Aznar, F.J. | Raga, J.A. | Tomas, J.
Anthropogenic marine debris is one of the major worldwide threats to marine ecosystems. The EU Marine Strategy Framework Directive (MSFD) has established a protocol for data collection on marine debris from the gut contents of the loggerhead sea turtle (Caretta caretta), and for determining assessment values of plastics for Good Environmental Status (GES). GES values are calculated as percent turtles having more than average plastic weight per turtle. In the present study, we quantify marine debris ingestion in 155 loggerhead sea turtles collected in the period 1995–2016 in waters of western Mediterranean (North-east Spain). The study aims (1) to update and standardize debris ingestion data available from this area, (2) to analyse this issue over two decades using Zero-altered (hurdle) models and (3) to provide new data to compare the only GES value available (off Italian waters). The composition of marine debris (occurrence and amounts of different categories) was similar to that found in other studies for the western Mediterranean and their amounts seem not to be an important threat to turtle survival in the region. Model results suggest that, in the study area, (a) period of stranding or capture, (b) turtle size and (c) latitude are significant predictors of anthropogenic debris ingestion (occurrence and amount) in turtles. The GES value for late juvenile turtles (CCL>40 cm) has decreased in the last ten years in the study area, and this is very similar to that obtained in Italian waters. We also provide a GES value for early juvenile turtles (CCL≤40 cm) for the first time. Recommendations arising from this study include ensuring use of (1) the standardized protocol proposed by the MSFD for assessing marine debris ingestion by loggerhead sea turtles and (2) the ecology of the turtles (neritic vs oceanic), rather than their size, to obtain GES values.
اظهر المزيد [+] اقل [-]Toxic elements and associations with hematology, plasma biochemistry, and protein electrophoresis in nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida
2017
Perrault, Justin R. | Stacy, Nicole I. | Lehner, Andreas F. | Poor, Savannah K. | Buchweitz, John P. | Walsh, Catherine J.
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species.
اظهر المزيد [+] اقل [-]Do loggerhead sea turtle (Caretta caretta) gut contents reflect the types, colors and sources of plastic pollution in the Southwest Indian Ocean?
2023
Thibault, Margot | Hoarau, Ludovic | Lebreton, Laurent | Le Corre, Matthieu | Barret, Mathieu | Cordier, Emmanuel | Ciccione, Stéphane | Royer, Sarah Jeanne | Ter Halle, Alexandra | Ramanampamonjy, Aina | Jean, Claire | Dalleau, Mayeul
We analyzed plastic debris ingested by loggerheads from bycatch between 2007 and 2021 in the Southwest Indian Ocean (SWIO). We also analyzed plastic debris accumulated on beaches of the east coast of Madagascar as a proxy for ocean plastics to compare the characteristics of beached plastics and plastic ingested by turtles. We conducted a “brand audit” of the plastics to determine their country of origin. An oceanic circulation model was used to identify the most likely sources of plastics in the SWIO. In total, 202 of the 266 loggerheads analyzed had ingested plastics. Plastics categorized as “hard” and “white” were equally dominant in loggerheads and on beaches, suggesting no diet selectivity. Both the brand audit and circulation modeling demonstrated that Southeast Asia is the main source of plastic pollution in the region. This study demonstrates that loggerheads can be used as bioindicators of plastic pollution in the SWIO.
اظهر المزيد [+] اقل [-]Persistent organic pollutants in plasma and stable isotopes in red blood cells of Caretta caretta, Chelonia mydas and Lepidochelys olivacea sea turtles that nest in Brazil
2021
Filippos, Luciana S. | Taniguchi, Satie | Baldassin, Paula | Pires, Thaís | Montone, Rosalinda C.
Studies of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs), in sea turtles are reported, but there are still spatial data gaps worldwide. POP contamination of live female blood plasma from Caretta caretta (n = 28), Chelonia mydas (n = 31) and Lepidochelys olivacea (n = 19), which nest in Brazil and feed along the South Atlantic Ocean, was investigated. Carbon and nitrogen stable isotopes from red blood cells (RBC) were also evaluated to obtain information about trophic ecology. C. caretta had the highest POP concentrations, followed by L. olivacea and C. mydas. PCBs predominated in all species, and the major OCPs were the DDTs (dichlorodiphenyltrichloroethane and derivatives) and Lindane. POPs and stable isotopes revealed intra- and interspecific variations, which reflect the high plasticity in the use of habitat and food resources, making individuals within the same population susceptible to different exposures to pollutants.
اظهر المزيد [+] اقل [-]Microplastic at nesting grounds used by the northern Gulf of Mexico loggerhead recovery unit
2018
Beckwith, Valencia K. | Fuentes, Mariana M.P.B.
Microplastics can impact key habitats used by endangered species, such as marine turtles. They impact the environment by transporting toxicants and altering sediment properties affecting temperature and sediment permeability. Our study determined the exposure of the ten most important nesting sites for the Northern Gulf of Mexico Loggerhead Recovery Unit to microplastic. Sand samples were obtained at each nesting site during the 2017 nesting season and analyzed for abundance and characteristics of microplastic. Microplastic was found at all sites, with an average abundance of 61.08 ± 34.61 pieces/m2, and 59.9% located at the dunes, where turtles primarily nest. A gradual decrease in microplastics abundance was observed from the most western nesting ground to the east. The results from this study indicate that microplastic accumulation on nesting sites for the Northern Gulf of Mexico may be of great concern, and could negatively affect the incubating environment for marine turtles.
اظهر المزيد [+] اقل [-]Impacts of plastic ingestion on post-hatchling loggerhead turtles off South Africa
2016
Ryan, Peter G. | Cole, Georgina | Spiby, Kevin | Nel, Ronel | Osborne, Alexis | Perold, Vonica
Twenty-four of 40 (60%) loggerhead turtle Caretta caretta post-hatchlings (carapace<9cm) that died within 2months of stranding on southern Cape beaches in April 2015 contained ingested anthropogenic debris. Plastic comprised of 99% of debris: 77% hard plastic fragments, 10% flexible packaging and 8% fibres; industrial pellets comprised only 3%, compared to ~70% in 1968–1973, when 12% of stranded post-hatchlings contained plastics. Turtles selected for white (38%) and blue (19%) items, but translucent items (23%) were under-represented compared to beach mesodebris. Ingested loads did not decrease up to 52days in captivity, indicating long retention times. Plastic killed 11 turtles by blocking their digestive tracts or bladders, and contributed to the deaths of five other turtles. Our results indicate that the amount and diversity of plastic ingested by post-hatchling loggerhead turtles off South Africa have increased over the last four decades, and now kill some turtles.
اظهر المزيد [+] اقل [-]Marine debris ingestion by sea turtles (Testudines) on the Brazilian coast: an underestimated threat?
2015
de Carvalho, Robson Henrique | Lacerda, Pedro Dutra | da Silva Mendes, Sarah | Barbosa, Bruno Corrêa | Paschoalini, Mariana | Prezoto, Fabio | de Sousa, Bernadete Maria
Assessment of marine debris ingestion by sea turtles is important, especially to ensure their survival. From January to December 2011, 23 specimens of five species of sea turtles were found dead or dying after being rehabilitated, along the coast of the municipality of Rio de Janeiro, Brazil. To detect the presence of marine debris in the digestive tract of these turtles, we conducted a postmortem examination from the esophagus until the distal portion of the large intestine for each specimen. Of the total number of turtles, 39% had ingested marine debris such as soft plastic, hard plastic, metal, polyethylene terephthalate (PET) bottle caps, human hair, tampons, and latex condoms. Five of the seven sea turtles species are found along the Brazilian coast, where they feed and breed. A large number of animals are exposed to various kinds of threats, including debris ingestion.
اظهر المزيد [+] اقل [-]