خيارات البحث
النتائج 1 - 10 من 366
Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics النص الكامل
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
اظهر المزيد [+] اقل [-]Phase transformation of silica particles in coal and biomass combustion processes النص الكامل
2022
Yang, Xuezhi | Lu, Dawei | Zhu, Bao | Sun, Zhendong | Li, Gang | Li, Jie | Liu, Qian | Jiang, Guibin
Inhalation of respirable silica particles can cause serious lung diseases (e.g., silicosis and lung cancer), and the toxicity of respirable silica is highly dependent on its crystal form. Common combustion processes such as coal and biomass burning can provide high temperature environments that may alter the crystal forms of silica and thus affect its toxic effects. Although crystalline silica (i.e., quartz, tridymite, and cristobalite) were widely found at different temperatures during the burning processes, the sources and crystal transformation pathways of silica in the burning processes are still not well understood. Here, we investigate the crystal transformation of silica in the coal and biomass combustion processes and clarify the detailed transformation pathways of silica for the first time. Specifically, in coal burning process, amorphous silica can transform into quartz and cristobalite starting at 1100 °C, and quartz transforms into cristobalite starting at 1200 °C; in biomass burning process, amorphous silica can transform into cristobalite starting at 800 °C, and cristobalite transforms into tridymite starting at 1000 °C. These transformation temperatures are significantly lower than those predicted by the classic theory due to possibly the catalysis of coexisting metal elements (e.g., aluminum, iron, and potassium). Our results not only enable a deeper understanding on the combustion-induced crystal transformation of silica, but also contribute to the mitigation of population exposure to respirable silica.
اظهر المزيد [+] اقل [-]Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being النص الكامل
2022
Sharma, Pooja | Dutta, Deblina | Udayan, Aswathy | Nadda, Ashok Kumar | Lam, Su Shiung | Kumar, Sunil
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
اظهر المزيد [+] اقل [-]Phase transformation-driven persulfate activation by coupled Fe/N–biochar for bisphenol a degradation: Pyrolysis temperature-dependent catalytic mechanisms and effect of water matrix components النص الكامل
2022
Wang, Yujiao | Wang, Li | Cao, Yuqing | Bai, Shanshan | Ma, Fang
Fe–N co-doped biochar is recently an emerging carbocatalyst for persulfate activation in situ chemical oxidation (ISCO). However, the involved catalytic mechanisms remain controversial and distinct effects of coexisting water components are still not very clear. Herein, we reported a novel N-doped biochar-coupled crystallized Fe phases composite (Fe@N-BC₈₀₀) as efficient and low-cost peroxydisulfate (PDS) activators to degrade bisphenol A (BPA), and the underlying influencing mechanism of coexisting inorganic anions (IA) and humic constituent. Due to the formation of graphitized nanosheets with high defects (AI index>0.5, ID/IG = 1.02), Fe@N-BC₈₀₀ exhibited 2.039, 5.536, 8.646, and 23.154-fold higher PDS catalytic activity than that of Fe@N-BC₆₀₀, Fe@N-BC₄₀₀, N-BC, BC. Unlike radical pathway driven by carbonyl group and pyrrolic N of low/mid-temperature Fe@N–BCs. The defective graphitized nanosheets and Fe-Nx acted separately as electron transfer and radical pathway active sites of Fe@N-BC₈₀₀, where π-π sorption assisted with pyrrolic N and pore-filling facilitated BPA degradation. The strong inhibitory effects of PO₄³⁻ and NO₂⁻ were ascribed to competitive adsorption of phosphate (61.11 mg g⁻¹) and nitrate (23.99 mg g⁻¹) on Fe@N-BC₈₀₀ via electrostatic attraction and hydrogen bonding. In contrast, HA competed for the pyrrolic-N site and hindered electron delivery. Moreover, BPA oxidation pathways initiated by secondary free radicals were proposed. The study facilitates a thorough understanding of the intrinsic properties of designed biochar and contributes new insights into the fate of degradation byproducts formed from ISCO treatment of micropollutants.
اظهر المزيد [+] اقل [-]Mechanism of biochar functional groups in the catalytic reduction of tetrachloroethylene by sulfides النص الكامل
2022
Yang, Yadong | Piao, Yunxian | Wang, Ruofan | Su, Yaoming | Qiu, Jinrong | Liu, Na
In recent years, biochar has become of considerable interest for environmental applications, it can be used as a catalyst for sulfides reduction of perchloroethylene, but the crucial role of biochar properties played in catalyzing dechlorination remained ambiguous investigation. To pinpoint the critical functional groups, the modified biochars were respectively produced by HNO₃, KOH and H₂O₂ with similar dimensional structures but different functional groups. Combined with the adsorption and catalytic results of different biochars, the acid-modified biochar had the best catalytic performance (99.9% removal) due to the outstanding specific surface area and ample functional groups. According to characterization and DFT results, carboxyl and pyridine nitrogen exhibited a positive correlation with the catalytic rate, indicating that their contribution to catalytic performance. Customizing biochar with specific functional groups removed depth demonstrated that the carboxyl was essential component. Further, alkaline condition was conducive to catalytic reduction, while tetrachloroethylene cannot be reduced under acidic conditions, because HS⁻ and S²⁻ mainly existed in alkaline environment and the sulfur-containing nucleophilic structure formed with biochar was more stable under this condition. Overall, this study opens new perspectives for in situ remediation by biochar in chlorinated olefin polluted anoxic environment and promotes our insight of modifying for biochar catalyst design.
اظهر المزيد [+] اقل [-]Column tests for evaluation of the enzymatic biodegradation capacity of hydrocarbons (C10–C50) contaminated soil النص الكامل
2021
Kadri, Tayssir | Robert, Thomas | Rouissi, Tarek | Sebastian, Joseph | Magdouli, Sara | Brar, Satinder Kaur | Martel, Richard | Lauzon, Jean-Marc
Though many studies pertaining to soil bioremediation have been performed to study the microbial kinetics in shake flasks, the process efficiency in column tests is seldom. In the present study, soil columns tests were carried out to study the biodegradation of soil contaminated with a high concentration of diesel (≈19.5 g/kg) petroleum hydrocarbons expressed as C₁₀–C₅₀. Experiments were done with crude enzymatic cocktail produced by the hydrocarbonoclastic bacterium, Alcanivorax borkumensis. A. borkumensis was grown on a media with 3% (v/v) motor oil as the sole carbon and energy source. The effects of the enzyme concentration, treatment time and oxidant on the bioremediation efficiency of C₁₀–C₅₀ were investigated. A batch test was also carried out in parallel to investigate the stability of the enzymes and the effect of the biosurfactants on the desorption and the bioconversion of C₁₀–C₅₀. Batch tests indicated that the biosurfactants significantly affected the desorption and alkane hydroxylase and lipase enzymes, maintained their catalytic activity during the 20-day test, with a half-life of 7.44 days and 8.84 days, respectively. The crude enzyme cocktail, with 40 U/mL of lipase and 10 U/mL of alkane hydroxylase, showed the highest conversion of 57.36% after 12 weeks of treatment with a degradation rate of 0.0218 day⁻¹. The results show that the soil column tests can be used to optimize operating conditions for hydrocarbon degradation and to assess the performance of the overall bioremediation process.
اظهر المزيد [+] اقل [-]In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes النص الكامل
2021
Ahamed, Ashiq | Liang, Lili | Chan, Wei Ping | Tan, Preston Choon Kiat | Yip, Nicklaus Tze Xuan | Bobacka, Johan | Veksha, Andrei | Yin, Ke | Lisak, Grzegorz
The valorization of municipal solid waste incineration bottom and fly ashes (IBA and IFA) as catalysts for thermochemical plastic treatment was investigated. As-received, calcined, and Ni-loaded ashes prepared via hydrothermal synthesis were used as low-cost waste-derived catalysts for in-line upgrading of volatile products from plastic pyrolysis. It was found that both IBA and air pollution control IFA (APC) promote selective production of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) without significantly affecting the formation of other gaseous and liquid species. There was insignificant change in the product distribution when electrostatic precipitator IFA (ESP) was used, probably due to the lack of active catalytic species. Calcined APC (C-APC) demonstrated further improvement in the BTEX yield that suggested the potential to enhance the catalytic properties of ashes through pre-treatment. By comparing with the leaching limit values stated in the European Council Decision, 2003/33/EC for the acceptance of hazardous waste at landfills, all the ashes applied remained in the same category after the calcination and pyrolysis processes, except the leaching of Cl⁻ from the ESP, which was around the borderline. Therefore, the use of ashes in catalytic reforming application do not significantly deteriorate their metal leaching behavior. Considering its superior catalytic activity towards BTEX formation, C-APC was loaded with Ni at 15 and 30 wt%. The Ni-loading favored an increase in overall oil yield, while reducing the gas yield when compared to the benchmark Ni loaded ZSM catalyst. However, Ni addition also caused the formation of more heavier hydrocarbons (C20–C35) that would require post-treatment to recover favorable products like BTEX.
اظهر المزيد [+] اقل [-]Synthesis of oxygen vacancy-enriched N/P co-doped CoFe2O4 for high-efficient degradation of organic pollutant: Mechanistic insight into radical and nonradical evolution النص الكامل
2021
Hu, Mingzhu | Zhu, Jinyi | Zhou, Wenjun
Oxygen vacancy-enriched N/P co-doped cobalt ferrite (NPCFO) was synthesized using ionic liquid as N and P sources, and then the catalytic performance and mechanism of NPCFO upon peroxymonosulfate (PMS) activation for the degradation of organic pollutants were investigated. The as-synthesized NPCFO-700 exhibited excellent catalytic performance in activating PMS, and the degradation rate constant of 4-chlorophenol (4-CP) increased with the increase of OV concentration in NPCFO-x. EPR analysis confirmed the existence of ·OH, SO₄·⁻, and ¹O₂ in the NPCFO-700/PMS system, in which OV could induce the generation of ¹O₂ by PMS adsorption and successive capture, and also served as electronic transfer medium to accelerate the redox cycle of M²⁺/M³⁺ (M denotes Co or Fe) for the generation of radical to synergistically degrade organic pollutants. In addition, the contribution of free radical and nonradical to 4-CP degradation was observed to be strongly dependent on solution pH, and SO₄·⁻ was the major ROS in 4-CP degradation under acid and alkaline condition, while ¹O₂ was involved in the degradation of 4-CP under neutral condition due its selective oxidation capacity, as evidenced by the fact that such organic pollutants with ionization potential (IP) below 9.0 eV were more easily attacked by ¹O₂. The present study provided a novel insight into the development of transition metal-based heterogeneous catalyst containing massive OV for high-efficient PMS activation and degradation of organic pollutants.
اظهر المزيد [+] اقل [-]Role of functional groups in reaction kinetics of dithiothreitol with secondary organic aerosols النص الكامل
2020
The toxicity of organic aerosols has been largely ascribed to the generation of reactive oxygen species, which could subsequently induce oxidative stress in biological systems. The reaction of DTT with redox-active species in PM has been generally assumed to be pseudo-first order, with the oxidative potential of PM being represented by the DTT consumption per minute of reaction time per μg of PM. Although catalytic reactive species such as transition metals and quinones are long believed to be the main contributors of DTT responses, the role of non-catalytic DTT reactive species such as organic hydroperoxides (ROOH) and electron-deficient alkenes (e.g., conjugated carbonyls) in DTT consumption has been recently highlighted. Thus, understanding the reaction kinetics and mechanisms of DTT consumption by various PM components is required to interpret the oxidative potential measured by DTT assays more accurately. In this study, we measured the DTT consumptions over time and characterized the reaction products using model compounds and secondary organic aerosols (SOA) with varying initial concentrations. We observed that the DTT consumption rates linearly increased with both initial DTT and sample concentrations. The overall reaction order of DTT with non-catalytic reactive species and SOA in this study is second order. The reactions of DTT with different functional groups have significantly different rate constants. The reaction rate constant of isoprene SOA with DTT is mainly determined by the concentration of ROOH. For toluene SOA, both ROOH and electron-deficient alkenes may dominate its DTT reaction rates. These results provide some insights into the interpretation of DTT-based aerosol oxidative potential and highlight the need to study the toxicity mechanism of ROOH and electron-deficient alkenes in PM for future work.
اظهر المزيد [+] اقل [-]Per- and polyfluoroalkyl substances exert strong inhibition towards human carboxylesterases النص الكامل
2020
Liu, Yong-Zhe | Pan, Li-Hua | Bai, Yu | Yang, Kun | Dong, Pei-Pei | Fang, Zhong-Ze
PFASs are highly persistent in both natural and living environment, and pose a significant risk for wildlife and human beings. The present study was carried out to determine the inhibitory behaviours of fourteen PFASs on metabolic activity of two major isoforms of carboxylesterases (CES). The probe substrates 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) for CES1 and fluorescein diacetate (FD) for CES2 were utilized to determine the inhibitory potentials of PFASs on CES in vitro. The results demonstrated that perfluorododecanoic acid (PFDoA), perfluorotetradecanoic acid (PFTA) and perfluorooctadecanoic acid (PFOcDA) strongly inhibited CES1 and CES2. The half inhibition concentration (IC₅₀) value of PFDoA, PFTA and PFOcDA for CES1 inhibition was 10.6 μM, 13.4 μM and 12.6 μM, respectively. The IC₅₀ for the inhibition of PFDoA, PFTA and PFOcDA towards CES2 were calculated to be 9.56 μM, 17.2 μM and 8.73 μM, respectively. PFDoA, PFTA and PFOcDA exhibited noncompetitive inhibition towards both CES1 and CES2. The inhibition kinetics parameters (Kᵢ) were 27.7 μM, 26.9 μM, 11.9 μM, 4.04 μM, 29.1 μM, 27.4 μM for PFDoA-CES1, PFTA-CES1, PFOcDA-CES1, PFDoA-CES2, PFTA-CES2, PFOcDA-CES2, respectively. In vitro-in vivo extrapolation (IVIVE) predicted that when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 2.77 μM, 2.69 μM and 1.19 μM, respectively, it might interfere with the metabolic reaction catalyzed by CES1 in vivo; when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 0.40 μM, 2.91 μM, 2.74 μM, it might interfere with the metabolic reaction catalyzed by CES2 in vivo. Molecular docking was used to explore the interactions between PFASs and CES. In conclusion, PFASs were found to cause inhibitory effects on CES in vitro, and this finding would provide an important experimental basis for further in vivo testing of PFASs focused on CES inhibition endpoints.
اظهر المزيد [+] اقل [-]