خيارات البحث
النتائج 1 - 10 من 159
Comparative kinetic desorption of 60Co, 85Sr and 134Cs from a contaminated natural silica sand column: Influence of varying physicochemical conditions and dissolved organic matter
2006
Solovitch-Vella, N. | Garnier, J.-M. | Laboratoire d'Etudes Radioécologiques des milieux Continental et marin (IRSN/PRP-ENV/SESURE/LERCM) ; Service d'étude et de surveillance de la radioactivité dans l'environnement (PRP-ENV/SESURE) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) | Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
In order to determine the mechanisms of the retention of 60Co, 85Sr and 134Cs in natural silica sand columns, desorption experiments were performed by changes of pH and ionic strength and by injection of natural organic matter (NOM). Injection of KCl (0.1 M) resulted in a high release of 60Co (60-100%) and 85Sr (72-100%) but a smaller release of 134Cs (31-66%). Only limited release of 60Co (66%) and 85Sr (71%) and no release of 134Cs were observed by injection of NOM. The different percentages of desorption were related to the chemical characteristics of the organic colloids previously retained in columns before the desorption step. The results evidenced different sorption processes on energetically heterogeneous surface sites. According to the initial conditions, the binding of the radionuclides to the solid phase resulted from weak and easily reversible sorption processes to strong association probably by inner sphere complexes. The rather weak release of 134Cs by KCl was attributed to the strong retention of 134Cs by clay coatings on the natural silica sand surfaces. © 2005 Elsevier Ltd. All rights reserved.
اظهر المزيد [+] اقل [-]Untangling radiocesium dynamics of forest-stream ecosystems: A review of Fukushima studies in the decade after the accident
2021
Sakai, Masaru | Tsuji, Hideki | Ishii, Yumiko | Ozaki, Hirokazu | Takechi, Seiichi | Jo, Jaeick | Tamaoki, Masanori | Hayashi, Seiji | Gomi, Takashi
Forest-stream ecosystems are widespread and biodiverse terrestrial landscapes with physical and social connections to downstream human activities. After radiocesium is introduced into these ecosystems, various material flows cause its accumulation or dispersal. We review studies conducted in the decade after the Fukushima nuclear accident to clarify the mechanisms of radiocesium transfer within ecosystems and to downstream areas through biological, hydrological, and geomorphological processes. After its introduction, radiocesium is heavily deposited in the organic soil layer, leading to persistent circulation due to biological activities in soils. Some radiocesium in soils, litter, and organisms is transported to stream ecosystems, forming contamination spots in depositional habitats. While reservoir dams function as effective traps, radiocesium leaching from sediments is a continual phenomenon causing re-contamination downstream. Integration of data regarding radiocesium dynamics and contamination sites, as proposed here, is essential for contamination management in societies depending on nuclear power to address the climate crisis.
اظهر المزيد [+] اقل [-]Response of Plantago major to cesium and strontium in hydroponics: Absorption and effects on morphology, physiology and photosynthesis
2019
Burger, Anna | Weidinger, Marieluise | Adlassnig, Wolfram | Puschenreiter, Markus | Lichtscheidl, Irene
Human activities lead to increasing concentration of the stable elements cesium (Cs) and strontium (Sr) and their radioactive isotopes in the food chain, where plants play an important part. Here we investigated Plantago major under the influence of long-term exposure to stable Cs and Sr.The plants were cultivated hydroponically in different concentrations of cesium sulfate (between 0.002 and 20 mM) and strontium nitrate (between 0.001 and 100 mM).Uptake of Cs and Sr into leaves was analyzed from extracts by inductively coupled plasma mass spectrometry (ICP-MS). It was increased with increasing external Cs and Sr concentrations. However, the efficiency of Cs and Sr transfer from solution to plants was higher for low external concentrations. Highest transfer factors were 6.78 for Cs and 71.13 for Sr. Accumulation of Sr was accompanied by a slight decrease of potassium (K) and calcium (Ca) in leaves, whereas the presence of Cs in the medium affected only uptake of K.The toxic effects of Cs and Sr were estimated from photosynthetic reactions and plant growth.In leaves, Cs and Sr affected the chlorophyll fluorescence even at their low concentrations. Low and high concentrations of both ions reduced dry weight and length of roots and leaves.The distribution of the elements between the different tissues of leaves and roots was investigated using Energy Dispersive X-Ray microanalysis (EDX) with scanning electron microscope (SEM). Overall, observations suggested differential patterns in accumulating Cs and Sr within the roots and leaves.When present in higher concentrations the amount of Cs and Sr transferred from environment to plants was sufficient to affect some physiological processes. The experimental model showed a potential for P. major to study the influence of radioactive contaminants and their removal from hotspots.
اظهر المزيد [+] اقل [-]Lichens as a spatial record of metal air pollution in the industrialized city of Huelva (SW Spain)
2019
Parviainen, Annika | Casares Porcel, Manuel | Marchesi, Claudio | Garrido, Carlos J.
Huelva is a highly industrialized city in SW Spain hosting, among others, a Cu smelter, a phosphate fertilizer plant, a power plant, and oil refineries. This study aims to evaluate metal concentrations in lichens as bioindicators of atmospheric pollution in the impacted urban areas. Xanthoria parietina species from Huelva and nearby villages, as well as reference samples from remote, non-contaminated urban areas, were analyzed for trace elements (V, Cr, Mn, Co, Ni, Cu, Zn, Sr, As, Cd, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Er, Tm, Yb, Lu, Pb, Th, U) using Inductively Coupled Plasma-Mass Spectrometry; and for major elements (Ca, K, Mg, P, and S) by Inductively Coupled Plasma-Optical Emission Spectrometry after acid digestion.The metal composition of X. parietina exhibits spatial distribution patterns with extremely elevated concentrations (Co, Ni, Cu, Zn, As, Cd, Sb, Ba, Pb, U, and S) in the surroundings of the industrial estates to <1 km distance. Mean concentrations were significantly lower in the urban areas >1 km from the pollution sources. However, air pollution persists in the urban areas up to 4 km away, as the mean concentrations of Cu, Zn, As, Cd, Sb and S remained considerably elevated in comparison to the reference samples. Though rigorous source apportionment analysis was not the aim of this study, a good positive correlation of our results with metal abundances in ambient particulate matter and in pollution sources points to the Cu smelter as the main source of pollution. Hence, the severe air pollution affecting Huelva and nearby urban areas may be considered a serious health risk to local residents.
اظهر المزيد [+] اقل [-]Sedimentary archive of Polycyclic Aromatic Hydrocarbons and perylene sources in the northern part of Taihu Lake, China
2019
Li, Aili | Beek, Tim aus der | Schubert, Michael | Yu, Zhenyang | Schiedek, Thomas | Schüth, Christoph
In the present work, we analyzed the concentration patterns of 20 Polycyclic Aromatic Hydrocarbons (PAHs) in 25 surface sediments and 11 sediment cores from the northern part of Taihu Lake, China. Three of the cores were dated based on ¹³⁷Cs activity for the deposition age of the sediment. The spatial distributions of the PAH concentrations show that the inflow rivers into Zhushan Bay and Meiliang Bay were the main pathway for PAHs and sediment input to the northern part of the lake. This results in substantially higher PAH concentrations (up to 5000 ng/g) and sedimentation rates (higher than the average of 3–4 mm/a) in the area close to the river outlets. In addition, results also show that PAH concentrations in the sediments considerably increased from the early 1960s, but the decreasing concentrations in the upper layers of the sediment could be attributed to the introduction of measures on environmental improvement from ca. 2000. There were both anthropogenic and biogenic origins of perylene in the lake sediments, which were distinguished based on spatial distribution patterns and also the concentration proportions of perylene to the sum of the 20 PAHs. In the cores collected close to river outlets, the concentration proportions of perylene typically range from 0.02 to 0.18 and there are significant positive linear correlations between the concentration of perylene and three anthropogenic PAHs (Benzo[a]pyrene, Benzo[e]pyrene, Pyrene), suggesting that perylene was dominated by anthropogenic input. However, the cores collected further away from the river outlets show the concentration proportions between 0.13 and 0.96, and present significant negative correlations or no correlations between perylene and the three PAHs, suggesting that perylene was mainly formed by biogenic activities. Furthermore, the different perylene sources accompanied with the location distributions imply that anthropogenic activities could inhibit its biogenic formation.
اظهر المزيد [+] اقل [-]Sampling design and required sample size for evaluating contamination levels of 137Cs in Japanese fir needles in a mixed deciduous forest stand in Fukushima, Japan
2017
Oba, Yurika | Yamada, Toshihiro
We estimated the sample size (the number of samples) required to evaluate the concentration of radiocesium (¹³⁷Cs) in Japanese fir (Abies firma Sieb. & Zucc.), 5 years after the outbreak of the Fukushima Daiichi Nuclear Power Plant accident. We investigated the spatial structure of the contamination levels in this species growing in a mixed deciduous broadleaf and evergreen coniferous forest stand. We sampled 40 saplings with a tree height of 150 cm–250 cm in a Fukushima forest community. The results showed that: (1) there was no correlation between the ¹³⁷Cs concentration in needles and soil, and (2) the difference in the spatial distribution pattern of ¹³⁷Cs concentration between needles and soil suggest that the contribution of root uptake to ¹³⁷Cs in new needles of this species may be minor in the 5 years after the radionuclides were released into the atmosphere. The concentration of ¹³⁷Cs in needles showed a strong positive spatial autocorrelation in the distance class from 0 to 2.5 m, suggesting that the statistical analysis of data should consider spatial autocorrelation in the case of an assessment of the radioactive contamination of forest trees. According to our sample size analysis, a sample size of seven trees was required to determine the mean contamination level within an error in the means of no more than 10%. This required sample size may be feasible for most sites.
اظهر المزيد [+] اقل [-]Vertical distribution and temporal dynamics of dissolved 137Cs concentrations in soil water after the Fukushima Dai-ichi Nuclear Power Plant accident
2017
Iwagami, Sho | Onda, Yūichi | Tsujimura, Maki | Hada, Manami | Pun, Ishwar
Radiocesium (137Cs) migration from headwater forested areas to downstream rivers has been investigated in many studies since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, which was triggered by a catastrophic earthquake and tsunami on 11 March 2011. The accident resulted in the release of a huge amount of radioactivity and its subsequent deposition in the environment. A large part of the radiocesium released has been shown to remain in the forest. The dissolved 137Cs concentration and its temporal dynamics in river water, stream water, and groundwater have been reported, but reports of dissolved 137Cs concentration in soil water remain sparse.In this study, soil water was sampled, and the dissolved 137Cs concentrations were measured at five locations with different land-use types (mature/young cedar forest, broadleaf forest, meadow land, and pasture land) in Yamakiya District, located 35 km northwest of FDNPP from July 2011 to October 2012. Soil water samples were collected by suction lysimeters installed at three different depths at each site. Dissolved 137Cs concentrations were analyzed using a germanium gamma ray detector. The dissolved 137Cs concentrations in soil water were high, with a maximum value of 2.5 Bq/L in July 2011, and declined to less than 0.32 Bq/L by 2012. The declining trend of dissolved 137Cs concentrations in soil water was fitted to a two-component exponential model. The rate of decline in dissolved 137Cs concentrations in soil water (k1) showed a good correlation with the radiocesium interception potential (RIP) of topsoil (0–5 cm) at the same site. Accounting for the difference of 137Cs deposition density, we found that normalized dissolved 137Cs concentrations of soil water in forest (mature/young cedar forest and broadleaf forest) were higher than those in grassland (meadow land and pasture land).
اظهر المزيد [+] اقل [-]Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima
2016
Yang, Baolu | Onda, Yūichi | Wakiyama, Yoshifumi | Yoshimura, Kazuya | Sekimoto, Hitoshi | Ha, Yiming
About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012–2014) after the nuclear accident. Our results showed that radiocesium migrated into 24–28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for ¹³⁷Cs and ¹³⁴Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy.
اظهر المزيد [+] اقل [-]Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill
2016
Dincer Kırman, Zeynep | Sericano, José L. | Wade, Terry L. | Bianchi, Thomas S. | Marcantonio, Franco | Kolker, Alexander S.
In 2010, an estimate 4.1 million barrels of oil were accidentally released into the Gulf of Mexico (GoM) during the Deepwater Horizon (DWH) Oil Spill. One and a half years after this incident, a set of subtidal and intertidal marsh sediment cores were collected from five stations in Barataria Bay, Louisiana, USA, and analyzed to determine the spatial and vertical distributions and source of hydrocarbon residues based on their chemical composition. An archived core, collected before the DWH oil spill from the same area, was also analyzed to assess the pre-spill hydrocarbon distribution in the area. Analyses of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and stable carbon isotope showed that the distribution of petroleum hydrocarbons in Barataria Bay was patchy and limited in areal extent. Significant TPH and ΣPAH concentrations (77,399 μg/g and 219,065 ng/g, respectively) were detected in the surface sediments of one core (i.e., core A) to a depth of 9 cm. Based on a sedimentation rate of 0.39 cm yr−1, determined using 137Cs, the presence of anthropogenic hydrocarbons in these sediment core deposited ca. 50 to 60 years ago. The historical background hydrocarbon concentrations increased significantly at the sediment surface and can be attributed to recent inputs. Although the oil present in the bay's sediments has undergone moderate weathering, biomarker analyses performed on core A samples likely indicated the presence of hydrocarbons from the DWH oil spill. The effects of oiling events on Barataria Bay and other marsh ecosystems in this region remain uncertain, as oil undergoes weathering changes over time.
اظهر المزيد [+] اقل [-]Different cesium-137 transfers to forest and stream ecosystems
2016
Sakai, Masaru | Gomi, Takashi | Negishi, Junjiro N. | Iwamoto, Aimu | Okada, Kengo
Understanding the mechanisms of ¹³⁷Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of ¹³⁷Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of ¹³⁷Cs in stream litter was significantly lower than in forest litter, the result of ¹³⁷Cs leaching from litter in stream water. The difference in ¹³⁷Cs concentrations between the two types of litter was reflected in the ¹³⁷Cs concentrations in the animal community. While the importance of ¹³⁷Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of ¹³⁷Cs through terrestrial and aquatic ecosystems, and that ¹³⁷Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem.
اظهر المزيد [+] اقل [-]