خيارات البحث
النتائج 1 - 10 من 537
Assessment of Indoor Air Quality in Schools from Anatolia, Turkey
2022
Babaoglu, Ulken Tunga | Ogutcu, Hatice | Erdogdu, Makbule | Taskiran, Funda | Gullu, Gulen | Oymak, Sibel
Air pollution damages children’s health in many different ways, through both chronic and acute effects. The aims of our research are to reveal the indoor air quality levels in schools. Subject and indoor air measurements were performed in 34 primary schools located in the Central Anatolia region. PM10, PM2.5, CO2, CO, CH2O, relative humidity, temperature, and total bacteria and fungus levels were measured. In the urban region, mean PM1 was higher than the other regions(p=0.029). PM10 and PM2.5 were higher in schools in rural areas. According to CO2 measurements, only one school was identified to be below the upper limit recommended by the WHO. Total microorganism concentration was exceeded in 44.1% of classrooms. Indoor PM1, PM2.5, PM10, CO2, total bacteria and fungus levels were high and above recommended limits. Human activities, movements of students could be considered the most important indoor factors for particle matter increase. Indoor parameters could be lowered by organizing the school environment.
اظهر المزيد [+] اقل [-]School Indoor Air Pollutants: In Relation to Allergy and Respiratory Symptoms among School Children in Urban Areas
2022
Hashim, Zailina | Mohamad Fadzil, Nur Shahira | Mohd Fuad, Siti Raihan | Shamsudin, Shamsul Bahari | Mohd Isa, Khairul Nizam | Song, Tan Tek | Sieman, Jony | Mohd Elias, Saliza | Hashim, Jamal Hisham
Indoor air pollutants affect children’s health and previous research mostly focuses on respiratory and allergic diseases. However, little is known about the risks among school children in East Malaysia. Therefore, we studied associations between school children’s respiratory and allergic symptoms and indoor air pollutants in schools in Sabah, Malaysia. We randomly enrolled 332 school children (14 years old) from 24 classrooms in 6 secondary schools in Kota Kinabalu, Sabah. Information on personal characteristics, respiratory and allergic symptoms were gathered by using a standard questionnaire. The skin prick test was used to characterize the atopy. In each classroom, the indoor concentrations of particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), formaldehyde, total volatile organic compounds (TVOC), carbon dioxide (CO2) temperature and relative humidity were monitored. Overall, 11.7% reported doctor-diagnosed asthma, 14.8% wheezing, 17.5% day-time breathlessness, 37.0% breathlessness after exercise, 13.0% breathlessness at night-time, 55.1% rhinitis and 10.8% skin allergic in the last 12 months. Regression analysis showed that the onset of wheezing was common in doctor-diagnosed asthma (OR= 8.29, 95% CI= 3.70-16.10) and with parental asthma/allergy (OR= 2.13, 95% CI= 1.10-4.15), and associated with concentrations of NO2 (OR= 1.03, 95% CI= 1.01-1.21) and CO2 (OR= 1.01, 95% CI= 1.01-1.11). Day-time breathlessness was associated with indoor NO2 (OR=1.02, 95% CI= 1.02-1.35) and TVOC (OR= 1.30, 95% CI= 1.10-1.52). The indoor concentrations of NO2, CO2, TVOC and PM2.5 as well as parental asthma/allergy, and parental smoking were associated with the outcome of respiratory and allergic symptoms.
اظهر المزيد [+] اقل [-]Clean water, sanitation and under-five children diarrhea incidence: Empirical evidence from the South Africa’s General Household Survey
2021
Omotayo, Abiodun Olusola; Olagunju, Kehinde Oluseyi; Omotoso, Abeeb Babatunde; Ogunniyi, Adebayo; Otekunrin, Olutosin Ademola; Daud, Adebola Saidat | https://orcid.org/0000-0001-9537-9743 Ogunniyi, Adebayo
PR | IFPRI3; ISI; DCA; 1 Fostering Climate-Resilient and Sustainable Food Supply; 2 Promoting Healthy Diets and Nutrition for all; G Cross-cutting gender theme | DSGD
اظهر المزيد [+] اقل [-]Availability, accessibility, and use of green spaces and cognitive development in primary school children
2023
Fernandes, Amanda | Krog, Norun, Hjertager | Mceachan, Rosemary | Nieuwenhuijsen, Mark | Julvez, Jordi | Márquez, Sandra | de Castro, Montserrat | Urquiza, José | Heude, Barbara | Vafeiadi, Marina | Gražulevičienė, Regina | Slama, Rémy | Dedele, Audrius | Aasvang, Gunn, Marit | Evandt, Jorunn | Andrusaityte, Sandra | Kampouri, Mariza | Vrijheid, Martine | Instituto de Salud Global - Institute For Global Health [Barcelona] (ISGlobal) | Universitat Pompeu Fabra [Barcelona] (UPF) | Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública = Consortium for Biomedical Research of Epidemiology and Public Health (CIBERESP) | Norwegian Institute of Public Health [Oslo] (NIPH) | Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK (BIHR) | Institut d'Investigació Sanitària Pere Virgili [Tarragona] (IISPV) ; Hospital Universitari Sant Joan de Reus = Sant Joan de Reus University Hospital | Centre for Research in Epidemiology and Statistics | Centre de Recherche Épidémiologie et Statistiques (CRESS (U1153 / UMR_A 1125)) ; Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | University of Crete [Heraklion] (UOC) | Vytautas Magnus University - Vytauto Didziojo Universitetas (VDU) | Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB) ; Centre Hospitalier Universitaire [CHU Grenoble] (CHUGA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA) | ANR-19-CE36-0003,EDeN,Exposition précoces aux perturbateurs endocriniens et neurodéveloppement de l'enfant : le rôle de l'axe hypothalamo-hypophysaire(2019)
International audience | Green spaces may have beneficial impacts on children's cognition. However, few studies explored the exposure to green spaces beyond residential areas, and their availability, accessibility and uses at the same time. The aim of the present study was to describe patterns of availability, accessibility, and uses of green spaces among primary school children and to explore how these exposure dimensions are associated with cognitive development. Exposures to green space near home, school, commuting route, and other daily activity locations were assessed for 1607 children aged 6-11 years from six birth cohorts across Europe, and included variables related to: availability (NDVI buffers: 100, 300, 500 m), potential accessibility (proximity to a major green space: linear distance; within 300 m), and use (play time in green spaces: hours/year), and the number of visits to green spaces (times/previous week). Cognition measured as fluid intelligence, inattention, and working memory was assessed by computerized tests. We performed multiple linear regression analyses on pooled and imputed data adjusted for individual and area-level confounders. Availability, accessibility, and uses of green spaces showed a social gradient that was unfavorable in more vulnerable socioeconomic groups. NDVI was associated with more playing time in green spaces, but proximity to a major green space was not. Associations between green space exposures and cognitive function outcomes were not statistically significant in our overall study population. Stratification by socioeconomic variables showed that living within 300 m of a major green space was associated with improved working memory only in children in less deprived residential areas (β = 0.30, CI: 0.09,0.51), and that more time playing in green spaces was associated with better working memory only in children of highly educated mothers (β per IQR increase in hour/year = 0.10; 95% CI: 0.01, 0.19). However, studying within 300 m of a major green space increased inattention scores in children in more deprived areas (β = 15.45, 95% CI: 3.50, 27.40).
اظهر المزيد [+] اقل [-]Perceived green space quality, child biomarkers and health-related outcomes: A longitudinal study
2022
Putra, I Gusti Ngurah Edi | Astell-Burt, Thomas | Feng, Xiaoqi
Accumulating exposure to quality green space over time is posited to influence child health, yet longitudinal studies are scarce. This study aimed to examine the associations between trajectories of perceived green space quality and child health-related outcomes. We used data from 1874 childrenin the B-cohort of the Longitudinal Study of Australian Children who participated in the Child Health Checkpoint module at 11–12 years. Data on caregiver perceived green space quality measured biennially was assessed using discrete trajectory mixture models to group children by contrasting distributions in green space quality over time. Examination of associations between trajectory groups of perceived green space quality and child biomarkers (i.e., albumin-to-creatinine ratio, total, cholesterol, total triglycerides, and glucose), physical health and behavioural assessments (i.e., anthropometric measurements, blood pressure, sedentary behaviour, physical activity, sleep, aerobic work capacity, and general wellbeing), and health care use were assessed using multilevel models, adjusted for sociodemographic variables. Four perceived green space quality trajectories were identified: “decreasing quality from high to moderate”; “increasing quality from low to high”; “consistently high quality”; “consistently low quality”. Compared with consistently low levels of quality green space, adjusted models indicated consistently high-quality green space was associated with lower total triglycerides (β −0.13; 95%CI -0.25, −0.01). Lower odds of hospital admission was observed among children who accumulated quality green space over time (OR 0.45; 95%CI 0.23, 0.87). These associations were observed in boys only in sex-stratified analyses. Moreover, boys accumulating quality green space through time tended to have lower diastolic blood pressure (β −2.76; 95%CI -5.17, −0.35) and girls who experienced loss in quality green space tended to have a higher percentage of body fat (β 2.81; 95%CI 0.43, 5.20). Accumulating quality green space over time is important for various aspects of child health, with contrasting benefits by sex.
اظهر المزيد [+] اقل [-]The relationship between particulate matter and lung function of children: A systematic review and meta-analysis
2022
Zhang, Wenjing | Ma, Runmei | Wang, Yanwen | Jiang, Ning | Zhang, Yi | Li, Tiantian
There have been many studies on the relationship between fine particulate matter (PM₂.₅) and lung function. However, the impact of short-term or long-term PM₂.₅ exposures on lung function in children is still inconsistent globally, and the reasons for the inconsistency of the research results are not clear. Therefore, we searched the PubMed, Embase and Web of Science databases up to May 2022, and a total of 653 studies about PM₂.₅ exposures on children's lung function were identified. Random effects meta-analysis was used to estimate the combined effects of the 25 articles included. PM₂.₅ concentrations in short-term exposure studies mainly come from individual and site monitoring. And for every 10 μg/m³ increase, forced vital capacity (FVC), forced expiratory volume in the first second (FEV₁) and peak expiratory flow (PEF) decreased by 21.39 ml (95% CI: 13.87, 28.92), 25.66 ml (95% CI: 14.85, 36.47) and 1.76 L/min (95% CI: 1.04, 2.49), respectively. The effect of PM₂.₅ on lung function has a lag effect. For every 10 μg/m³ increase in the 1-day moving average PM₂.₅ concentration, FEV₁, FVC and PEF decreased by 14.81 ml, 15.40 ml and 1.18 L/min, respectively. PM₂.₅ concentrations in long-term exposure studies mainly obtained via ground monitoring stations. And for every 10 μg/m³ increase, FEV₁, FVC and PEF decreased by 61.00 ml (95% CI: 25.80, 96.21), 54.47 ml (95% CI: 7.29, 101.64) and 10.02 L/min (95% CI: 7.07, 12.98), respectively. The sex, body mass index (BMI), relative humidity (RH), temperature (Temp) and the average PM₂.₅ exposure level modify the relationship between short-term PM₂.₅ exposure and lung function. Our study provides further scientific evidence for the deleterious effects of PM₂.₅ exposures on children's lung function, suggesting that exposure to PM₂.₅ is detrimental to children's respiratory health. Appropriate protective measures should be taken to reduce the adverse impact of air pollution on children's health.
اظهر المزيد [+] اقل [-]Lipid responses to environmental perfluoroalkyl substance exposure in a Taiwanese Child cohort
2021
Lee, Sheng-Han | Tseng, Wei-Chen | Du, Zhi-Yi | Lin, Wan-Yu | Chen, Mei-Huei | Lin, Ching-Chun | Lien, Guang-Wen | Liang, Hao-Jan | Wen, Hui-Ju | Guo, Yue-Leon | Chen, Pau-Chung | Lin, Jingyu
Although recent epidemiologic studies have focused on some of the health effects of perfluoroalkyl substance (PFASs) exposure in humans, the associations between PFASs exposure and the lipidome in children are still unclear. The purpose of this study was to assess lipid changes in children to understand possible molecular events of environmental PFASs exposure and suggest potential health effects. A total of 290 Taiwanese children (8–10 years old) were included in this study. Thirteen PFASs were analyzed in their serum by high-performance liquid chromatography-tandem mass spectrometry (LC-MS). MS-based lipidomic approaches were applied to examine lipid patterns in the serum of children exposed to different levels of PFASs. LC coupling with triple quadrupole MS technology was conducted to analyze phosphorylcholine-containing lipids. Multivariate analyses, such as partial least squares analysis along with univariate analyses, including multiple linear regression, were used to analyze associations between s exposure and unique lipid patterns. Our results showed that different lipid patterns were discovered in children exposed to different levels of specific PFASs, such as PFTrDA, PFOS, and PFDA. These changes in lipid levels may be involved in hepatic lipid metabolism, metabolic disorders, and PFASs-membrane interactions. This study showed that lipidomics is a powerful approach to identify critical PFASs that cause metabolite perturbation in the serum of children and suggest possible adverse health effects of these chemicals in children.
اظهر المزيد [+] اقل [-]Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong
2021
Li, Na | Ying, Guang-Guo | Hong, Huachang | Deng, Wen-Jing
Seven perfluorinated and polyfluorinated substances (PFASs), namely perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoro-1,10-decanedicarboxylic acid (PFDDA), were evaluated in urine and hair samples from children (age: 4–6 years, N = 53), airborne particles sampled at 17 kindergartens, and tap water and bottled water samples. All samples were collected in Hong Kong. The analytical results suggested widespread PFAS contamination. All target PFASs were detected in at least 32% of urine samples, with geometric mean (GM) concentrations ranging from 0.18 to 2.97 ng/L, and in 100% of drinking water samples at GM concentrations of 0.18–21.1 ng/L. Although PFOS and PFDDA were not detected in hair or air samples, the other target PFASs were detected in 48–70% of hair samples (GM concentrations: 2.40–233 pg/g) and 100% of air samples (GM concentrations: 14.8–536.7 pg/m³). In summary, the highest PFAS concentrations were detected in airborne particles measured in kindergartens. PFOA was the major PFAS detected in hair, urine, and drinking water samples, while PFOA, PFDA, and PFHpA were dominant in airborne particles. Although a significant difference in PFAS concentrations in hair samples was observed between boys and girls (p < .05), no significant sex-related difference in urinary PFAS or paired PFAS (hair/urine) concentrations was observed.
اظهر المزيد [+] اقل [-]Intraday effects of outdoor air pollution on acute upper and lower respiratory infections in Australian children
2021
Cheng, Jian | Su, Hong | Xu, Zhiwei
Children’s respiratory health are particularly vulnerable to outdoor air pollution, but evidence is lacking on the very acute effects of air pollution on the risk of acute upper respiratory infections (AURI) and acute lower respiratory infections (ALRI) in children. This study aimed to evaluate the risk of cause-specific AURI and ALRI, in children within 24 h of exposure to air pollution. We obtained data on emergency cases, including 11,091 AURI cases (acute pharyngitis, acute tonsillitis, acute obstructive laryngitis and epiglottitis, and unspecified acute upper respiratory infections) and 11,401 ALRI cases (pneumonia, acute bronchitis, acute bronchiolitis, unspecified acute lower respiratory infection) in Brisbane, Australia, 2013–2015. A time-stratified case-crossover analysis was used to examine the hourly association of AURI and ALRI with high concentration (95th percentile) of four air pollutants (particulate matters with aerodynamic diameter <10 μm (PM₁₀) and <2.5 μm (PM₂.₅), ozone (O₃), nitrogen dioxide (NO₂)). We observed increased risk of acute tonsillitis associated with PM₂.₅ within 13–24 h (odds ratio (OR), 1.45; 95% confidence interval [CI], 1.02–2.06) and increased risk of unspecified acute upper respiratory infections related to O₃ within 2–6 h (OR, 1.38, 95%CI, 1.12–1.70), NO₂ within 1 h (OR, 1.19; 95%CI, 1.01–1.40), and PM₂.₅ within 7–12 h (OR, 1.21; 95%CI, 1.02–1.43). Cold season and nigh-time air pollution has greater effects on AURI, whereas greater risk of ALRI was seen in warm season and daytime. Our findings suggest exposures to particulate and gaseous air pollution may transiently increase risk of AURI and ALRI in children within 24 h. Prevention measures aimed at protecting children’s respiratory health should consider the very acute effects of air pollution.
اظهر المزيد [+] اقل [-]Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils
2021
Yin, Naiyi | Zhao, Yongli | Wang, Pengfei | Du, Huili | Yang, Mei | Han, Zeliang | Chen, Xiaochen | Sun, Guoxin | Cui, Yanshan
To identify the role of gut microbiota in human health risk assessment, the bioaccessibility of heavy metals in 14 soil samples were determined in simulated gastrointestinal fluids. Compared to the small intestinal phase, the bioaccessibility values of the colon phase varied, either increased by 3.5-fold for As, by 2.2-fold for Cr, and by 1.6-fold for Ni, or reduced by 4.4-fold for Cu, respectively. The colon incubation with adult gut microbiota yielded higher bioaccessibility value of As (1.3 times) and Fe (3.4 times) than that of the child in most soil samples. Colon bioaccessibility was about 60% greater of Cd for the adult and 30% higher of Cr for the child. Congruent data on the bioaccessibility of Cu and Ni was observed. In addition, correlation analysis indicated that in vitro bioaccessibility was primarily related to total concentrations of heavy metals in soils, followed by soil pH and active Fe/Mn oxide. Significantly, risk assessment calculated based on colon bioaccessibility indicated that the target hazard quotient (THQ > 1) of As was presented in 3 soil samples for the adult (1.05–3.35) and in 9 soil samples for the child (1.06–26.93). The hazard index (HI) of the child was 4.00 on average, greater than that of the adult (0.62), primarily due to the contribution of As and Cd. It suggested non-carcinogenic risks are likely to occur in children through typical hand-to-mouth behavior. The adjustment of colon bioaccessibility will result in more accurate risk assessment of human exposure to heavy metals from oral ingestion of contaminated soils.
اظهر المزيد [+] اقل [-]