خيارات البحث
النتائج 1 - 10 من 20
Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality.
1993
Clarke G.M.
A miniaturized electrothermal array for rapid analysis of temperature preference behaviors in ecology and ecotoxicology
2022
Henry, Jason | Bai, Yutao | Kreuder, Florian | Saaristo, Minna | Kaslin, Jan | Wlodkowic, Donald
Due to technical limitations, there have been minimal studies performed on thermal preferences and thermotactic behaviors of aquatic ectotherm species commonly used in ecotoxicity testing. In this work, we demonstrate an innovative, purpose-built and miniaturized electrothermal array for rapid thermal preference behavioral tests. We applied the novel platform to define thermal preferences in multiple invertebrate and vertebrate species. Specifically, Dugesia notogaea (freshwater planarians), Chironomus tepperi (nonbiting midge larvae), Ostracoda (seed shrimp), Artemia franciscana (brine shrimp), Daphnia carinata (water flea), Austrochiltonia subtenuis (freshwater amphipod), Physa acuta (freshwater snail), Potamopyrgus antipodarum (New Zealand mud snail) and larval stage of Danio rerio (zebrafish) were tested. The Australian freshwater water fleas, amphipods, snail Physa acuta as well as zebrafish exhibited the most consistent preference to cool zones and clear avoidance of zones >27 °C out of nine species tested. Our results indicate the larval stage of zebrafish as the most responsive species highly suitable for prospective development of multidimensional behavioral test batteries. We also showcase preliminary data that environmentally relevant concentrations of pharmaceutical pollutants such as non-steroidal anti-inflammatory drug (NSAID) ibuprofen (9800 ng/L) and insecticide imidacloprid (4600 ng/L) but not anti-depressant venlafaxine (2200 ng/L) and (iv) anticonvulsant medications gabapentin (400 ng/L) can perturb thermal preference behavior of larval zebrafish. Collectively our results demonstrate the utility of simple and inexpensive thermoelectric technology in rapid exploration of thermal preference in diverse species of aquatic animals. We postulate that more broadly such technologies can also have added value in ecotoxicity testing of emerging contaminants.
اظهر المزيد [+] اقل [-]Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates
2018
Ziajahromi, Shima | Kumar, Anupama | Neale, Peta A. | Leusch, Frederic D.L.
Microplastics are a widespread environmental pollutant in aquatic ecosystems and have the potential to eventually sink to the sediment, where they may pose a risk to sediment-dwelling organisms. While the impacts of exposure to microplastics have been widely reported for marine biota, the effects of microplastics on freshwater organisms at environmentally realistic concentrations are largely unknown, especially for benthic organisms. Here we examined the effects of a realistic concentration of polyethylene microplastics in sediment on the growth and emergence of a freshwater organism Chironomus tepperi. We also assessed the influence of microplastic size by exposing C. tepperi larvae to four different size ranges of polyethylene microplastics (1–4, 10–27, 43–54 and 100–126 μm). Exposure to an environmentally relevant concentration of microplastics, 500 particles/kgsediment, negatively affected the survival, growth (i.e. body length and head capsule) and emergence of C. tepperi. The observed effects were strongly dependent on microplastic size with exposure to particles in the size range of 10–27 μm inducing more pronounced effects. While growth and survival of C. tepperi were not affected by the larger microplastics (100–126 μm), a significant reduction in the number of emerged adults was observed after exposure to the largest microplastics, with the delayed emergence attributed to exposure to a stressor. While scanning electron microscopy showed a significant reduction in the size of the head capsule and antenna of C. tepperi exposed to microplastics in the 10–27 μm size range, no deformities to the external structure of the antenna and mouth parts in organisms exposed to the same size range of microplastics were observed. These results indicate that environmentally relevant concentrations of microplastics in sediment induce harmful effects on the development and emergence of C. tepperi, with effects greatly dependent on particle size.
اظهر المزيد [+] اقل [-]Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae)
2016
Colombo, Valentina | Pettigrove, Vincent J. | Hoffmann, Ary A. | Golding, Lisa A.
Classical laboratory-based single-species sediment bioassays do not account for modifications to toxicity from bioturbation by benthic organisms which may impact predictions of contaminated sediment risk to biota in the field. This study aims to determine the effects of bioturbation on the toxicity of zinc measured in a standard laboratory bioassay conducted with chironomid larvae (Chironomus tepperi). The epi-benthic chironomid larvae were exposed to two different levels of sediment contamination (1600 and 1980 mg/kg of dry weight zinc) in the presence or absence of annelid worms (Lumbriculus variegatus) which are known to be tolerant to metal and to have a large impact on sediment properties through bioturbation.Chironomids had 5–6x higher survival in the presence of L. variegatus which shows that bioturbation had a beneficial effect on the chironomid larvae. Chemical analyses showed that bioturbation induced a flux of zinc from the pore water into the water column, thereby reducing the bioavailability of zinc in pore water to the chironomid larvae. This also suggested that pore water was the major exposure path for the chironomids to metals in sediment. During the study, annelid worms (Oligochaetes) produced a thin layer of faecal pellets at the sediment surface, a process known to: (i) create additional adsorption sites for zinc, thus reducing its availability, (ii) increase the microbial abundance that in turn could represent an additional food source for opportunistic C. tepperi larvae, and (iii) modify the microbial community’s structure and alter the biogeochemical processes it governs thus indirectly impact zinc toxicity.This study represents a contribution in recognising bioturbating organisms as “ecological engineers” as they directly and indirectly influence metal bioavailability and impact other sediment-inhabiting species. This is significant and should be considered in risk assessment of zinc levels (and other metals) in contaminated sediment when extrapolating from laboratory studies to the field.
اظهر المزيد [+] اقل [-]Effects of microcystin-producing and non-microcystin-producing Microcystis on the behavior and life history traits of Chironomus pallidivittatus
2021
Cai, Shenghe | Jia, Yunlu | Donde, Oscar Omondi | Wang, Zhi | Zhang, Junqian | Fang, Tao | Xiao, Bangding | Wu, Xingqiang
Species of the genus Microcystis are among the most notorious cyanobacteria in eutrophic lakes worldwide, with ability present adverse effects on many aquatic organisms. In the surface sediments, Microcystis can be ingested by benthic macroinvertebrates such as Chironomus. However, the potential negative effects of Microcystis on Chironomus life history traits remain unclear. In the present study, we investigated the effect of different Microcystis diets on specific behaviors (burrowing activity, locomotion ability) and life history traits of Chironomus pallidivittatus (Diptera, Chironomidae). We also studied the interactive effects of microcystin-producing M. aeruginosa and temperature (15, 20, and 25 °C) stress on chironomid larvae. The results showed that the inhibitory effect on the cumulative emergence and burrowing activity of larvae was more severe when they were fed M. aeruginosa among the three Microcystis diets groups. Locomotion ability (i.e., locomotor distance and velocity) and adult dry weight decreased significantly in the group fed M. aeruginosa. Locomotion was significantly inhibited and mortality increased when the larvae were fed a mixture of M. aeruginosa and M. wesenbergii, which may have been the result of additive or synergistic effect of the toxins. Under the stress of lower temperature, C. pallidivittatus larvae exhibited weaker locomotion and growth ability, and the emerging adults were mostly male. At both the lower and higher temperature conditions, M. aeruginosa cause cumulative emergence decreased, and sex ratio imbalance, which inhibited the reproduction of larvae from the population perspective. The fourth-instar larvae showed better adaption to Microcystis than did the other instars. This study thus highlights the adverse effects of microcystin-producing M. aeruginosa on Chironomus. It also provides a novel perspective on how environmental factors may influence the behavior and life history traits of chironomid larvae, and how they may respond to cyanobacterial blooms and global warming.
اظهر المزيد [+] اقل [-]Effects of phenanthrene on different levels of biological organization in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli (Diptera: Chironomidae)
2018
Richardi, V.S. | Vicentini, M. | Morais, G.S. | Rebechi, D. | da Silva, T.A. | Fávaro, L.F. | Navarro-Silva, M.A.
The hydrocarbon phenanthrene is an organic compound commonly found in the environment. In aquatic ecosystems, it is highly toxic to organisms, although little is known about its effects on sediment-dwelling organisms. The purpose of this study was to evaluate phenanthrene effects on biochemical, histological, and ontogenetic levels in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli at acute and chronic exposure. Lethal concentrations were estimated and toxicity (acute-96 h and chronic- 8 d) tests were performed at phenanthrene concentrations from 0.12 to 1.2 mg L⁻¹. At acute and chronic exposure, we evaluated acetylcholinesterase (AChE), alpha esterase (EST-α), and beta esterase (EST-β) activities as well as histological alterations. In the assays with chronic exposure, effects on larval development were estimated using antennae length (instar estimative) and body length (growth estimative). The EST-α showed a significantly increased activity after 48 h at acute exposure to high concentrations of phenanthrene, while EST-β activity was increased after 48 and 72 h at acute exposure at higher concentrations and at 0.12 mg L⁻¹ at chronic exposure. At acute exposure, the midgut showed alterations such as brush border disruption, gastric caeca regression, and lumen area reduction; the fat body showed nuclear alteration in the trophocytes, while the Malpighian tubules showed brush border reduction and the salivary glands were subject to cytoplasm vacuolation. At chronic exposure, the same alterations were observed, in addition to vacuolar coalescence in the trophocytes of the fat body. Regarding larval development, a reduction of body length was observed with increasing phenanthrene concentrations. Similarly, molting was delayed; in the control group, all larvae were in the fourth instar, while at higher phenanthrene concentrations, larvae were predominantly in the third instar. Phenanthrene had toxic effects on this chironomid, indicating risks for natural populations.
اظهر المزيد [+] اقل [-]Effects of climate warming and nitrogen deposition on subtropical montane ponds (central China) over the last two centuries: Evidence from subfossil chironomids
2020
Zheng, Ting | Cao, Yanmin | Peng, Jia | Bai, Xue | Chen, Xu
Many remote montane ecosystems are experiencing biogeochemical changes driven by warming climate and atmospheric pollution. Compared with circumpolar and temperate lakes, the responses of subtropical montane lakes to these external stressors have been less investigated. Here we present sedimentary multi-proxies records (i.e. chironomids, elements and stable isotope of carbon and nitrogen) in ²¹⁰Pb-dated cores from two montane ponds (central China). Before the 1900s, low biomass and the dominance of opportunistic species (e.g. Chironomus anthracinus-type) in both ponds might be in response to cold and harsh condition. Thereafter, chironomid communities in both ponds experienced pronounced shifts. Nutrient-tolerant/warm-adapted species (e.g. Chironomus sp., Polypedilum nubeculosum-type and Endochironomus impar-type) proliferated and biomass increased synchronously after the 1900s, suggestive of favorable condition for chironomid growth. Redundancy analyses revealed that changes in chironomid communities in both ponds were significantly correlated with rising temperature and δ¹⁵N depletion. Prolonged growing season and nitrogen subsidy would increase primary productivity, and hence enhancing food availability for chironomids. Catchment-mediated indirect effects of warming and nitrogen deposition, such as hydrological changes and terrestrial organic matter inputs, would impose further influences on chironomid communities. Taken together, the combined effects of climate warming and nitrogen deposition have caused significant shifts in primary consumers of these montane ponds, and imposed cascading effects on structure and function of subtropical montane aquatic ecosystems.
اظهر المزيد [+] اقل [-]Potential ecological risk of heavy metal contamination in sediments and macrobenthos in coastal wetlands induced by freshwater releases: A case study in the Yellow River Delta, China
2016
Li, Ming | Yang, Wei | Sun, Tao | Jin, Yuwan
We investigated the nine heavy metal contents in the sediments and macrobenthos of the Yellow River Delta Wetlands using three experimental areas that received freshwater releases and one reference area that did not. Heavy metal contents, the single-factor contamination index (SFCI), the metal contamination index (MCI), and the biota-sediment accumulation factor (BSAF) were used to evaluate the potential ecological risk and bioaccumulation. We found that As exceeded the national standard value by more than 50%, and that the ranges of SFCI for each metal were generally larger in autumn than in spring. MCI showed no clear pattern, but the BSAF results suggest that Cd bioaccumulates from sediments to macrobenthos. Pollution-resistant species such as Corophium sinense, Chironomus sp., and Einfeldia sp. became dominant in the areas receiving freshwater releases, and provide direct evidence of ecological risk in the wetlands. Our results provide preliminary information to guide managers for ecological risk assessments.
اظهر المزيد [+] اقل [-]60Co accumulation from sediment and planktonic algae by midge larvae (Chironomus luridus)
1992
Baudin, J.P. | Nucho, R. (CEA-Institut de Protection et de Surete Nucleaire, DPEI/SERE, Laboratoire de Radioecologie des Eaux Continentales, CEN Cadarache, 13108 Saint-Paul-Lez-Durance Cedex (France))
Adsorption of Metals by Chitosan Beads in Sugarcane Cultivation Streams: Implications for Chironomus sancticaroli Insect Larvae (Diptera: Chironomidae)
2022
Geromel-Costa, Camila | Bernegossi, Aline Christine | Moura, Lidia | Corbi, Juliano José
Streams located in areas of sugarcane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. This process may cause impacts on streams located in the adjacent areas. The contamination of stream sediments can lead to bioaccumulation of such metal by aquatic organisms, such as benthic invertebrates. Chitosan beads, a biopolymer that demonstrates a high affinity for metal, are simple to prepare under the laboratory, have a low overall cost, and can be used for removing metals from aquatic sediments. This work studied the use of Chitosan beads in metal adsorption from sediments of streams located in areas of sugarcane cultivation and evaluated the effects on the survival of Chironomus sancticaroli insect larvae. Acute bioassays were performed in two scenarios, in the presence and in the absence of chitosan beads. The bioassay consisted of the exposure of 10 IV instar of Chironomus sancticaroli larvae, for 96 h in five stream sediments. The results showed that chitosan beads (containing only 5.5% of chitosan) adsorbed metals in the order of Mg > Zn > Mn > Cd. The statistical results demonstrated that the addition of chitosan to the bioassays allowed a high larvae survival. The outcomes showed evidence of the viability of chitosan in remediating the metal impacts and showed a positive influence on aquatic biota.
اظهر المزيد [+] اقل [-]