خيارات البحث
النتائج 1 - 10 من 13
Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment
2020
Zhao, Ranran | Chen, Guowei | Liu, Li | Zhang, Wei | Sun, Yifei | Li, Baoguo | Wang, Gang
Microalgal aggregation is a key to many ecosystem functions in aquatic environments. Yet mechanistic understanding of microalgae aggregation, especially the interactions with ubiquitous bacteria populations, remains elusive. We reported an experimental study illustrating how the emerging bacterial populations interacted with a model microalga (Chlamydomonas microsphaera) cells and the consequent aggregation patterns. Results showed that the emergence of bacterial populations significantly stimulated C. microsphaera aggregation. Both bacterial and C. microsphaera motilities were remarkably excited upon coculturing, with the mean cell velocity being up to 2.67 and 1.80 times of those of separate bacterial and C. microsphaera cultures, respectively. The stimulated bacterial and C. microsphaera cell velocity upon coculturing would likely provide a mechanism for enhanced probability of cell-cell collisions that led to amplified aggregation of C. microsphaera population. Correlation analysis revealed that bacterial resource foraging (for polysaccharides) was likely a candidate mechanism for stimulated cell motility in an organic carbon source-limited environment, whereby C. microsphaera-derived polysaccharides serve as the sole organic carbon source for heterotrophic bacteria which in turns facilitates bacteria-C. microsphaera aggregation. Additional analysis showed that bacterial populations capable of successive decomposing algal-derived organic matters dominated the cocultures, with the top five abundant genera of Brevundimonas (24.78%), Shinella (17.94%), Sphingopyxis (11.62%), Dongia (5.82%) and Hyphomicrobium (5.45%). These findings provide new insights into full understanding of microalgae-bacteria interactions and consequent microbial aggregation characteristics in aquatic ecosystems.
اظهر المزيد [+] اقل [-]Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation
2021
Dayana Priyadharshini, Stephen | Suresh Babu, Palanisamy | Manikandan, Sivasubramanian | Subbaiya, Ramasamy | Govarthanan, Muthusamy | Karmegam, Natchimuthu
Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems. In comparison to the conventional method of remediation, there are opportunities to commercially viable businesses interest with phycoremediation, thus by achieving cost reductions and renewable bioenergy options. Phycoremediation is an intriguing stage for treating wastewater since it provides tertiary bio-treatment while producing potentially valuable biomass that may be used for a variety of applications. Furthermore, the phycoremediation provides the ability to remove heavy metals as well as harmful organic substances, without producing secondary contamination. In this review, the role of microalgae in treating different wastewaters and the process parameters affecting the treatment and future scope of research have been discussed. Though several algae are employed for wastewater treatment, species of the genera Chlamydomonas, Chlorella, and Scenedesmus are extensively utilized. Interestingly, there is a vast scope for employing algal species with high flocculation capacity and adsorption mechanisms for the elimination of microplastics. In addition, the algal biomass generated during phycoremediation has been found to possess high protein and lipid contents, promising their exploitation in biofuel, food and animal feed industries.
اظهر المزيد [+] اقل [-]Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province, China
2021
Xin, Ruirui | Banda, Joseph Frazer | Hao, Chunbo | Dong, Huiyuan | Pei, Lixin | Guo, Dongyi | Wei, Pengfei | Du, Zerui | Zhang, Yi | Dong, Hailiang
Acid mine drainage (AMD) is generated by the bio-oxidation of sulfide minerals. To understand the AMD formation and evolution, it is necessary to determine the composition and variation of acidophilic community, and their role in AMD ecosystem. In this study, we compared seasonal variations of geochemistry and microbial composition of two adjacent AMD lakes with different formation histories in Anhui Province, China. Lake Paitu (PT) formed in 1970s near a mine dump and the pH was in the range of 3.01–3.16, with the lowest in spring and summer while the highest in winter. The main ions in PT were Al and SO₄²⁻, whereas Fe concentration was relatively low. The concentrations of these ions were the lowest in summer and the highest in winter. Lake Tafang (TF) formed in around 2013 in a pit was more acidic (pH 2.43–2.75), but the seasonal variation of pH was the same as PT. Compared with Lake PT, TF had higher Fe, lower Al and SO₄²⁻ concentrations, and showed no significant seasonal changes. Despite salient seasonal variations of prokaryotic composition in Lake PT, Ferrovum was the major iron-oxidizing bacterium in most seasons. Furthermore, Lake PT was also rich in heterotrophic bacteria (48.6 ± 15.9%). Both prokaryotic diversity and evenness of Lake TF were lower than PT, and chemolithotrophic iron-oxidizing bacteria (71.7 ± 25.4%) were dominant in almost all samples. Besides Ferrovum, more acid tolerant iron-oxidizer Leptospirillum and Acidithiobacillus were also abundant in Lake TF. Chlamydomonas was the major eukaryote in Lake PT and it flourished repeatedly at the end of December, causing an extremely high chlorophyll a concentration (587 μg/L) at one sampling site in 2016, which provided rich nutrients for heterotrophic bacteria. The main alga in Lake TF was Chrysonebula, but its concentration was low, apparently because of the strong acidity and dark red color of lake water.
اظهر المزيد [+] اقل [-]Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China
2017
Hao, Chunbo | Wei, Pengfei | Pei, Lixin | Du, Zerui | Zhang, Yi | Lu, Yanchun | Dong, Hailiang
Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43–280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, “Ferrovum”, a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe2+ was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic and Alpine suggested that the native Chlamydomonas species may have been both acidophilic and psychrophilic after a long acclimation time in this extreme environment.
اظهر المزيد [+] اقل [-]Improving carbohydrate accumulation in Chlamydomonas debaryana induced by sulfur starvation using response surface methodology
2022
Tazi, Karima | Jamai, Latifa | Seddouk, Loubna | Ettayebi, Mohamed | Mohammed, Alaoui-Mhamdi | Aleya, Lotfi | Idrissi, Abdellatif Janati
Most methods that promote carbohydrate production negatively affect cell growth and microalgal biomass production. This study explores, in a two-stage cultivation strategy, in Chlamydomonas debaryana the optimization of certain culture conditions for high carbohydrate production without loss of biomass. In the first stage, the interaction between sodium bicarbonate supplementation, aeration, and different growth periods was optimized using the response surface methodology (RMS). The 3-factor Box-Behnken design (BBD) was applied, and a second-order polynomial regression analysis was used to analyze the experimental data. The results showed that 0.45 g L⁻¹ of sodium bicarbonate combined with a good aerated agitation (0.6 L min⁻¹) and a cultivation period of 18 days are optimal to produce 5.02 g L⁻¹ of biomass containing 43% of carbohydrates.Under these optimized growth conditions, accumulation of carbohydrates was studied using different modes of nutritional stress. The results indicated that carbohydrate content was improved and the maximum accumulation (about 60% of the dry weight) was recorded under sulfur starvation with only a 14% reduction in biomass as compared to control. This study showed promising results as to biomass production and carbohydrate yield by the microalgae C. debaryana in view of production of third-generation biofuels.
اظهر المزيد [+] اقل [-]Tolerance Capacity of Chlamydomonas VHLR Mutants for the Toxicity of Mercury
2020
Samadani, Mahshid | El-Khoury, Jonathan | Dewez, David
The toxicity effect of metals on Chlamydomonas strains having a higher tolerance level for oxidative stress is important to investigate for better understanding their tolerance capacity. In this study, the toxicity of HgCl₂ was determined on two very high light resistant (VHLᴿ) mutant strains of Chlamydomonas, CC-3723 and CC-3724, and on the wild-type CC-125. All strains were exposed to 1–7 μM of HgCl₂ during 24–72 h. The results showed that VHLᴿ mutants were less affected by the effect of HgCl₂ than CC-125, due to a better ability to detoxify the level of intracellular reactive oxygen species (ROS) generated by Hg. In particular, the effect of 3 μM of HgCl₂ inhibited completely the growth rate of CC-125 at 24 h, which was correlated with a high accumulation of Hg and a strong level of ROS. From 48 to 72 h, the growth rate was recovered for all strains, which was stronger for VHLᴿ mutants than the wild-type by 50% at 48 h, when compared to 24 h. In addition, the extracytoplasmic polyP level decreased significantly compared to the control for all strains treated to 3 μM of HgCl₂ during 24–48 h. These results suggested that the polyP did participate to the tolerance for Hg through its cellular sequestration. Furthermore, the analysis of cellular morphology showed that VHLᴿ mutants formed palmelloid colonies of 4–5 cells under 3 μM of HgCl₂ at 48 h, reducing the surface contact with Hg. Therefore, VHLᴿ mutants were more tolerant than the wild-type to the effect of low concentrations of HgCl₂ (1 and 3 μM).
اظهر المزيد [+] اقل [-]Influence of pH on the Toxicity of Silver Nanoparticles in the Green Alga Chlamydomonas acidophila
2014
Oukarroum, Abdallah | Samadani, Mahshid | Dewez, David
The aim of this study was to investigate the effect of pH 4 and 7 on the cellular toxicity impact of silver nanoparticles (AgNPs) on the green alga Chlamydomonas acidophila. Changes in chlorophyll content, cellular viability, and reactive oxygen species (ROS) formation were determined permitting the characterization of the toxicity of AgNPs. Chemical characterization of AgNPs in suspension showed that nanoparticle size distribution was dependent to the pH of the culture medium, and a higher solubility was observed at pH 4 compared to that at pH 7. After 24 h of exposure, results indicated that the chlorophyll content and cellular viability decreased significantly, while the intracellular ROS production increased significantly, in relation to the increasing concentration of AgNPs (0.1–100 mg/L). Therefore, our results demonstrated that AgNP-induced toxicity was pH dependent as indicated by the cytotoxicity mediated through the induction of oxidative stress. In conclusion, the characterization of the physicochemical properties of AgNPs in aqueous solution having different pH is essential for the understanding of their toxicity impact on algal cells.
اظهر المزيد [+] اقل [-]Molecular taxonomical identification and phylogenetic relationships of some marine dominant algal species during red tide and harmful algal blooms along Egyptian coasts in the Alexandria region
2022
El-Hadary, Mona H. | Elsaied, Hosam E. | Khalil, Nehma M. | Mikhail, Samia K.
Harmful algal blooms (HABs) threaten the aquatic ecosystems due to either poisonous effects on living organisms or oxygen-consuming. So HABs’ accurate identification, including red tide, is crucial. This study aimed to molecular identification of dominant species during tide period in nine stations along Alexandria region at Egyptian costs during one year. Samples were collected weekly before water discoloration but daily during red tide intensive growth from both 50 cm below the surface and 3 m depth over the bottom from the water surface. The red tide detection was highly from early August to half of September, since its highest peak with a maximum frequency inside the Eastern Harbor. The examined cultures samples isolated during red tide had four dominant species. Peroxidase profile showed an expression pattern of three loci (Px1, Px2, and Px3) in most species. The Px2 was the only heterozygous locus among the three loci in all species. Protein profiling showed that 17 bands out of 65 were specific to the species. The phylogenetic relationships derived from profiles of protein and 18S rRNA gene operon sequences for the four isolated species were mostly similar. We identified the four dominant HABs species as Aplanochytrium sp., Chlamydomonas sp., Cryptophyceae sp., and Psammodictyon sp. based on their 18S rRNA sequences and deposited them at DDBJ/EMBL/GenBank database. Aplanochytrium sp. is recorded as a red tide causative species for the first time in the screened region despite belonging to the defunct fungi.
اظهر المزيد [+] اقل [-]Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana
2014
Kabra, Akhil N. | Ji, Min-Kyu | Choi, Jaewon | Kim, Jung Rae | Govindwar, Sanjay P. | Jeon, Byong-Hun
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L⁻¹), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L⁻¹) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L⁻¹. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L⁻¹. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g⁻¹) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.
اظهر المزيد [+] اقل [-]Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana
2016
Kumar, Muthukannan Satheesh | Kabra, Akhil N. | Min, Booki | El-Dalatony, Marwa M. | Xiong, Jiuqiang | Thajuddin, Nooruddin | Lee, Dae Sung | Jeon, Byong-Hun
The effect of insecticides (acephate and imidacloprid) on a freshwater microalga Chlamydomonas mexicana was investigated with respect to photosynthetic pigments, carbohydrate and protein contents, fatty acids composition and induction of stress indicators including proline, superoxide dismutase (SOD) and catalase (CAT). C. mexicana was cultivated with 1, 5, 10, 15, 20 and 25 mg L⁻¹ of acephate and imidacloprid. The microalga growth increased with increasing concentrations of both insecticides up to 15 mg L⁻¹, beyond which the growth declined compared to control condition (without insecticides). C. mexicana cultivated with 15 mg L⁻¹ of both insecticides for 12 days was used for further analysis. The accumulation of photosynthetic pigments (chlorophyll and carotenoids), carbohydrates and protein was decreased in the presence of both insecticides. Acephate and imidacloprid induced the activities of superoxide dismutase (SOD) and catalase (CAT) and increased the concentration of proline in the microalga, which play a defensive role against various environmental stresses. Fatty acid analysis revealed that the fraction of polyunsaturated fatty acids decreased on exposure to both insecticides. C. mexicana also promoted 25 and 21 % removal of acephate and imidacloprid, respectively. The biochemical changes in C. mexicana on exposure to acephate and imidacloprid indicate that the microalga undergoes an adaptive change in response to the insecticide-induced oxidative stress.
اظهر المزيد [+] اقل [-]