خيارات البحث
النتائج 1 - 10 من 60
Ignored effects of phosphite (P+III) on the growth responses of three typical algae species النص الكامل
2022
Han, Chao | Ren, Jinghua | Wang, Baoying | Wang, Zhaode | Yin, Hongbin | Ke, Fan | Xu, Di | Zhang, Lei | Si, Xiaoxia | Shen, Qiushi
Nowadays, the ubiquitous distribution and increasing abundance of P⁺ᴵᴵᴵ in waterbodies have caused serious concerns regarding its bioavailability and potential toxicity. However, our knowledge on these issues is relatively limited. We addressed previously unknown effects of P⁺ᴵᴵᴵ on three dominate algae species i.e. Microcystic aeruginosa (M. aeruginosa), Chlorella pyrenoidesa (C. pyrenoidesa) and Cyclotella. sp in eutrophic waterbodies in China. Remarkable declines in biomass, specific growth rate and Chl-a of algae cells treated with 0.01–0.7 mg/L P⁺ᴵᴵᴵ as sole or an alternative P source were observed, indicating P⁺ᴵᴵᴵ had an inhibitory effect on the algal growth. Besides, the intracellular enzyme activities e.g superoxide dismutase (SOD) and malondialdehyde (MDA) were significantly increased with P⁺ᴵᴵᴵ stress. M. aeruginosa and Cyclotella. sp cells seemed to be more sensitive to P⁺ᴵᴵᴵ toxicity than C. pyrenoidesa since cell membrane suffered more serious stress and destruction. These findings combined, it confirmed P⁺ᴵᴵᴵ could not be utilized as bioavailable P, but had certain toxicity to the tested algae. It indicated that the increased P⁺ᴵᴵᴵ abundance in eutrophic waterbodies would accelerate the algal cell death, which could have a positive effect against algal blooms. Our results provide new insights into assessing the ecological risks of P⁺ᴵᴵᴵ in aquatic environments.
اظهر المزيد [+] اقل [-]Effects of methanol, sodium citrate, and chlorella powder on enhanced anaerobic treatment of coal pyrolysis wastewater النص الكامل
2022
Shi, Jingxin | Wan, Ning | Han, Hongjun
To better promote environment friendly development of the coal chemical industry, this study investigated effects of methanol, sodium citrate, and chlorella powder (a type of microalgae) as co-metabolic substances on enhanced anaerobic treatment of coal pyrolysis wastewater with anaerobic sludge. The anaerobic sludge was loaded into four 2 L anaerobic reactors for co-metabolism enhanced anaerobic experiments. Anaerobic reactor 1 (R1) as control group did not add a co-metabolic substance; anaerobic reactor 2 (R2) added methanol; anaerobic reactor 3 (R3) added sodium citrate; and anaerobic reactor 4 (R4) added chlorella powder. In the blank control group, the removal ratios of total phenol (TPh), quinoline, and indole were only 12.07%, 42.15%, and 50.47%, respectively, indicating that 50 mg/L quinoline, 50 mg/L indole, and 600 mg/L TPh produced strong toxicity inhibition function on the anaerobic microorganism in reactor. When the concentration of methanol, sodium citrate, and chlorella was 400 μg/L, the reactors with co-metabolic substances had better treatment effect on TPh. Among them, the strengthening effects of sodium citrate (TPh removal ratio: 44.87%) and chlorella (47.85%) were better than that of methanol (38.72%) and the control group (10.62%). Additionally, the reactors with co-metabolic substances had higher degradation ratios on quinoline, indole, and chemical oxygen demand (COD). The data of extracellular polymeric substances showed that with the co-metabolic substances, anaerobic microorganisms produced more humic acids by degrading phenols and nitrogen-containing heterocyclic compounds (NHCs). Compared with the control group, the reactors added with sodium citrate and chlorella had larger average particle size of sludge. Thus, sodium citrate and chlorella could improve sludge sedimentation performance by increasing the sludge particle size. The bacterial community structures of reactors were explored and the results showed that Aminicenantes genera incertae sedis, Levinea, Geobacter, Smithella, Brachymonas, and Longilinea were the main functional bacteria in reactor added with chlorella.
اظهر المزيد [+] اقل [-]Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation النص الكامل
2021
Dayana Priyadharshini, Stephen | Suresh Babu, Palanisamy | Manikandan, Sivasubramanian | Subbaiya, Ramasamy | Govarthanan, Muthusamy | Karmegam, Natchimuthu
Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems. In comparison to the conventional method of remediation, there are opportunities to commercially viable businesses interest with phycoremediation, thus by achieving cost reductions and renewable bioenergy options. Phycoremediation is an intriguing stage for treating wastewater since it provides tertiary bio-treatment while producing potentially valuable biomass that may be used for a variety of applications. Furthermore, the phycoremediation provides the ability to remove heavy metals as well as harmful organic substances, without producing secondary contamination. In this review, the role of microalgae in treating different wastewaters and the process parameters affecting the treatment and future scope of research have been discussed. Though several algae are employed for wastewater treatment, species of the genera Chlamydomonas, Chlorella, and Scenedesmus are extensively utilized. Interestingly, there is a vast scope for employing algal species with high flocculation capacity and adsorption mechanisms for the elimination of microplastics. In addition, the algal biomass generated during phycoremediation has been found to possess high protein and lipid contents, promising their exploitation in biofuel, food and animal feed industries.
اظهر المزيد [+] اقل [-]Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae النص الكامل
2020
Guschina, Irina A. | Hayes, Anthony J. | Ormerod, Stephen J.
Despite growing concern about the occurrence of microplastics in aquatic ecosystems there is only rudimentary understanding of the pathways through which any adverse effects might occur. Here, we assess the effects of polystyrene microplastics (PS-MPs; <70 μm) on a common and widespread algal species, Chlorella sorokiniana. We used laboratory exposure to test the hypothesis that the lipids and fatty acids (FAs) are important molecules in the response reactions of algae to this pollutant. Cultivation with PS-MPs systematically reduced the concentration of essential linoleic acid (ALA, C18:3n-3) in C. sorokiniana, concomitantly increasing oleic acid (C18:1n-9). Among the storage triacylglycerols, palmitoleic and oleic acids increased at the expenses of two essential fatty acids, linoleic (LIN, C18:2n-6) and ALA, while PS-MPs had even more pronounced effects on the fatty acid and hydrocarbon composition of waxes and steryl esters. The FA composition of two major chloroplast galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), were affected implying changes in the conformational structure of photosynthetic complexes in ways that can impair the photosynthesis. These data reveal how exposure to polystyrene microplastics can modify the concentrations of lipid molecules that are important intrinsically in cell membranes, and hence the lipid bilayers that could form an important barrier between algal cellular compartments and plastics in the aquatic environment. Changes in lipid synthesis and fatty acid composition in algae could also have repercussions for food quality, growth and stressor resistance in primary consumers. We advocate further studies of microplastics effects on the lipid composition of primary producers, and of their potential propagation through aquatic food webs.
اظهر المزيد [+] اقل [-]Time-averaged concentrations are effective for predicting chronic toxicity of varying copper pulse exposures for two freshwater green algae species النص الكامل
2017
Angel, Brad M. | Simpson, Stuart L. | Granger, Ellissah | Goodwyn, Kathryn | Jolley, Dianne F.
Intermittent, fluctuating and pulsed contaminant discharges may result in organisms receiving highly variable contaminant exposures. This study investigated the effects of dissolved copper pulse concentration and exposure duration on the toxicity to two freshwater green algae species. The effects of single copper pulses of between 1 and 48 h duration and continuous exposures (72 h) on growth rate inhibition of Pseudokirchneriella subcapitata and Chlorella sp. were compared on a time-averaged concentration (TAC) basis. Relationships were then derived between the exposure concentration and duration required to elicit different levels of toxicity expressed as inhibition concentration (IC). Continuous exposure IC50's of 3.0 and 1.9 μg/L were measured on a TAC basis for P. subcapitata and Chlorella sp., respectively. Algal growth rates generally recovered to control levels within 24–48 h of the copper pulse removal, with some treatments exhibiting significantly (p < 0.05) higher rates of cell division than controls in this recovery period. For both algae, when exposed to treatments with equivalent TACs, the continuous exposure elicited similar or slightly greater growth rate inhibition than the pulsed exposures. To elicit equivalent inhibition, the exposure concentration increased as the exposure duration decreased, and power models fitted this relationship reasonably well for both species. Water quality guideline values (WQGVs) are predominantly derived using data from continuous exposure toxicity bioassays, despite intermittent contaminant exposures often occurring in aquatic systems. The results indicate the WQGV for copper may be relaxed for pulsed exposures by a factor less than or equivalent to the TAC and still achieve a protection to these sensitive algae species.
اظهر المزيد [+] اقل [-]Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton النص الكامل
2011
Wu, Yun | Wang, Wen-Xiong
We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains.
اظهر المزيد [+] اقل [-]Toxicity profile of labile preservative bronopol in water: The role of more persistent and toxic transformation products النص الكامل
2011
Cui, Na | Zhang, Xiaoxiang | Xie, Qing | Wang, Se | Chen, Jingwen | Huang, Liping | Qiao, Xianliang | Li, Xuehua | Cai, Xiyun
Transformation products usually differ in environmental behaviors and toxicological properties from the parent contaminants, and probably cause potential risks to the environment. Toxicity evolution of a labile preservative, bronopol, upon primary aquatic degradation processes was investigated. Bronopol rapidly hydrolyzed in natural waters, and primarily produced more stable 2-bromo-2-nitroethanol (BNE) and bromonitromethane (BNM). Light enhanced degradation of the targeted compounds with water site specific photoactivity. The bond order analysis theoretically revealed that the reversible retroaldol reactions were primary degradation routes for bronopol and BNE. Judging from toxicity assays and the relative pesticide toxicity index, these degradation products (i.e., BNE and BNM), more persistent and higher toxic than the parent, probably accumulated in natural waters and resulted in higher or prolonging adverse impacts. Therefore, these transformation products should be included into the assessment of ecological risks of non-persistent and low toxic chemicals such as the preservative bronopol.
اظهر المزيد [+] اقل [-]Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions النص الكامل
2009
Slaveykova, Vera I. | Startchev, Konstantin
The influence of pH, ionic strength, presence of humic or alginic acids, extracellular polymeric substances (EPS), or freshwater microalga Chlorella kesslerii on the stability and transformation of carboxyl-PEG-CdSe/ZnS core/shell quantum dots (QDs) in terms of number, hydrodynamic size and fluorescence of individual particles, was studied by fluorescence correlation spectroscopy. Obtained results demonstrated that QDs form stable dispersions at nanomolar concentrations under conditions typical for freshwaters. The presence of 5 or 15 mg C L−1 of humic acid or 50 mg C L−1 EPS did not significantly affect these parameters. In contrast, 5 or 50 mg C L−1 alginate at ionic strength of 10 mM shifted the hydrodynamic radius toward larger values, suggesting a possible capture of QDs by the linear alginate chains. The addition of microalga to the QD dispersions resulted in a slight reduction of the number of QDs and a significant decline in the fluorescence of individual QDs. Carboxyl-PEG-CdSe/ZnS core/shell quantum dots form stable dispersions under conditions representative of freshwaters.
اظهر المزيد [+] اقل [-]Inhibition of methylmercury uptake by freshwater phytoplankton in presence of algae-derived organic matter النص الكامل
2022
Li, Zhike | Chi, Jie | Shao, Bo | Wu, Zhengyu | He, Wei | Liu, Yiwen | Sun, Peizhe | Lin, Huiming | Wang, Xuejun | Zhao, Yingxin | Chen, Long | Tong, Yindong
As the first step of methylmercury (MeHg) entry into the aquatic food webs, MeHg uptake by phytoplankton is crucial in determining the final human MeHg exposure risks. MeHg availability to plankton is regulated by dissolved organic matter (DOM) in the water, while the extent of the impacts can vary largely based on the sources of DOM. Here, we investigated impacts of DOM sources on MeHg bioconcentration by three freshwater phytoplankton species (i.e. S. quadricauda, Chlorella sp., Microcystis elabens) in the laboratory system. We found that algae-derived DOM would prohibited the cellular MeHg bioconcentration by a percent up to 77–93%, while the soil-derived DOM didn't show similar inhibition effects. DOM characterization by the excitation‒emission matrices, Fourier transform infrared spectrum, ultra‒high performance liquid chromatography‒tandem quadrupole time of flight mass spectrometry shown that the molecular size of S-containing compound, rather than thiol concentration, has played a crucial role in regulating the MeHg uptake by phytoplankton. Climate change and increasing nutrient loadings from human activities may affect plankton growth in the freshwater, ultimately changing the DOM compositions. Impacts of these changes on cellular MeHg uptakes by phytoplankton should be emphasized when exploring the aquatic Hg cycling and evaluating their risks to human beings and wild life.
اظهر المزيد [+] اقل [-]Metagenomics analysis of microbial community distribution in large-scale and step-by-step purification system of swine wastewater النص الكامل
2022
Zheng, Mingmin | Shao, Shanshan | Chen, Yanzhen | Chen, Bilian | Wang, Mingzi
Biological treatment is one of the most widely used methods to treat swine wastewater in wastewater treatment plants. The microbial community plays an important role in the swine slurry treatment system. However, limited information is available regarding the correlation between pollutant concentration and dominant microbial community in swine wastewater. This work aimed to study the profiling of microbial communities and their abundance in the 40 M³/day large-scale and step-by-step treatment pools of swine wastewater. Metagenome sequencing was applied to study the changes of microbial community structure in biochemical reaction pools. The results showed that in the heavily polluted pools, it was mainly Proteobacteria, Cyanobacteria, Chlorella and other strains that could tolerate high concentration of ammonia nitrogen to remove nitrogen and absorb chemical oxygen demand (COD). In the moderately polluted pools, Nitrospirae, Actinobacteria and other strains further cooperated to purify swine wastewater. In the later stage, the emergence of Brachionus indicated the reduction of water pollution. The dominant microbes and their abundance changed with the purification of swine wastewater in different stages. Moreover, the dominant microflora of swine wastewater treatment pools at all levels reflected little difference in phylum classification level, while in genus classification level, the dominant microflora manifested great difference. Findings demonstrated that the microorganisms maintained ecological balance and absorbed the nutrients in the swine wastewater treatment pools, so as to play the role of purifying sewage. Therefore, the stepwise purification of swine wastewater can be realized by adding bacteria and microalgae of different genera.
اظهر المزيد [+] اقل [-]