خيارات البحث
النتائج 1 - 10 من 30
Effects of dim artificial light at night on locomotor activity, cardiovascular physiology, and circadian clock genes in a diurnal songbird
2021
Alaasam, Valentina J. | Liu, Xu | Niu, Ye | Habibian, Justine S. | Pieraut, Simon | Ferguson, Brad S. | Zhang, Yong | Ouyang, Jenny Q.
Artificial light is transforming the nighttime environment and quickly becoming one of the most pervasive pollutants on earth. Across taxa, light entrains endogenous circadian clocks that function to synchronize behavioral and physiological rhythms with natural photoperiod. Artificial light at night (ALAN) disrupts these photoperiodic cues and has consequences for humans and wildlife including sleep disruption, physiological stress and increased risk of cardiovascular disease. However, the mechanisms underlying organismal responses to dim ALAN, resembling light pollution, remain elusive. Light pollution exists in the environment at lower levels (<5 lux) than tested in many laboratory studies that link ALAN to circadian rhythm disruption. Few studies have linked dim ALAN to both the upstream regulators of circadian rhythms and downstream behavioral and physiological consequences. We exposed zebra finches (Taeniopygia gutatta) to dim ALAN (1.5 lux) and measured circadian expression of five pacemaker genes in central and peripheral tissues, plasma melatonin, locomotor activity, and biomarkers of cardiovascular health. ALAN caused an increase in nighttime activity and, for males, cardiac hypertrophy. Moreover, downstream effects were detectable after just short duration exposure (10 days) and at dim levels that mimic the intensity of environmental light pollution. However, ALAN did not affect circulating melatonin nor oscillations of circadian gene expression in the central clock (brain) or liver. These findings suggest that dim ALAN can alter behavior and physiology without strong shifts in the rhythmic expression of molecular circadian pacemakers. Approaches that focus on ecologically-relevant ALAN and link complex biological pathways are necessary to understand the mechanisms underlying vertebrate responses to light pollution.
اظهر المزيد [+] اقل [-]Effect of urban environment on pineal machinery and clock genes expression of tree sparrow (Passer montanus)
2019
Increasing urbanisation is altering the physiology of wild animals and the mechanisms involved are largely unknown. We hypothesised that altering the physiology of urban organisms is due to the effect of extra light at night on the circadian clock by modulating the expression of pineal machinery and clock genes. Two experiments were performed. In Experiment 1, immediately after being procured from their respective sites (urban and rural sites), birds were released individually in LLdᵢₘ light conditions. Circadian rhythm period, activity duration, and total activity count were calculated and did not differ between urban and rural birds. In Experiment 2, birds (from urban and rural habitats) were sampled at six time points at regular 4-h intervals, beginning 1 h after sunrise. We measured daily variations in plasma melatonin levels. We also analysed the expression levels of Aanat, Mel1A and Mel1B as an indicator of melatonin biosynthesis and action machinery. Clock and clock-controlled genes (Bmal1, Clock, Per2, Per3, Cry1 and Npas2) were studied in the hypothalamus, the pineal gland, and retina to investigate the effects of urban habitats on the circadian clock. Our results show that there is a lower expression of Aanat in the pineal gland and relatively low plasma melatonin levels in urban birds. Further, clock genes are also differentially expressed in all three central tissues of urban birds. We propose that alterations in the melatonin biosynthesis machinery and the expression of clock genes could result in miscalculations in the internal timing of the organism, with environmental timings leading to altered physiology in urban wild animals.
اظهر المزيد [+] اقل [-]Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5
2019
Xu, Yanyi | Wang, Wanjun | Zhou, Ji | Chen, Minjie | Huang, Xingke | Zhu, Yaning | Xie, Xiaoyun | Li, Weihua | Zhang, Yuhao | Kan, Haidong | Ying, Zhekang
Chronic ambient fine particulate matter (PM₂.₅) exposure correlates with various adverse health outcomes. Its impact on the circulating metabolome−a comprehensive functional readout of the interaction between an organism's genome and environment−has not however been fully understood. This study thus performed metabolomics analyses using a chronic PM₂.₅ exposure mouse model. C57Bl/6J mice (female) were subjected to inhalational concentrated ambient PM₂.₅ (CAP) or filtered air (FA) exposure for 10 months. Their sera were then analyzed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). These analyses identified 2570 metabolites in total, and 148 of them were significantly different between FA- and CAP-exposed mice. The orthogonal partial least-squares discriminant analysis (OPLS-DA) and heatmap analyses displayed evident clustering of FA- and CAP-exposed samples. Pathway analyses identified 6 perturbed metabolic pathways related to amino acid metabolism. In contrast, biological characterization revealed that 71 differential metabolites were related to lipid metabolism. Furthermore, our results showed that CAP exposure increased stress hormone metabolites, 18-oxocortisol and 5a-tetrahydrocortisol, and altered the levels of circadian rhythm biomarkers including melatonin, retinal and 5-methoxytryptophol.
اظهر المزيد [+] اقل [-]Clock-Bmal1 mediates MMP9 induction in acrolein-promoted atherosclerosis associated with gut microbiota regulation
2019
Wu, Xiaoyue | Chen, Lijun | Zeb, Falak | Li, Chaofeng | Jiang, Pan | Chen, Aochang | Xu, Chuyue | Haq, Ijaz ul | Feng, Qing
Circadian rhythm is believed to play important roles in atherosclerosis. The gut microbiota is found to be closely related to atherogenesis, and shows compositional and functional circadian oscillation. However, it's still unclarified whether circadian clock and intestinal microbiota are involved in the progression of atherosclerosis induced by environmental pollutant acrolein. Herein, patients with atherosclerosis showed higher MMP9, a promising biomarker for atherosclerosis, and lower Bmal1 and Clock expression in the plasma. Interestingly, acrolein exposure contributed to the increased MMP9, decreased Clock and Bmal1, and activated MAPK pathways in human umbilical vein endothelial cells (HUVECs). We found that knockdown of Clock or Bmal1 lead to upregulation of MMP9 in HUVECs, and that Clock and Bmal1 expression was elevated while MAPK pathways were blocked. Atherosclerotic apolipoproteinE-deficient mice consumed a high-fat diet were used and treated with acrolein (3 mg/kg/day) in the drinking water for 12 weeks. Upregulation of MMP9, and downregulation of Clock and Bmal1 were also observed in plasma of the mice. Besides, acrolein feeding altered gut microbiota composition at a phylum level especially for an increased Firmicutes and a decreased Bacteroidetes. Additionally, gut microbiota showed correlation with atherosclerotic plaque, MMP9 and Bmal1 levels. Therefore, our findings indicated that acrolein increased the expression of MMP9 through MAPK regulating circadian clock, which was associated with gut microbiota regulation in atherosclerosis. Circadian rhythms and gut microbiota might be promising targets in the prevention of cardiovascular disease caused by environmental pollutants.
اظهر المزيد [+] اقل [-]Regulation of zebrafish (Danio rerio) locomotor behavior and circadian rhythm network by environmental steroid hormones
2018
Zhao, Yanbin | Zhang, Kun | Fent, Karl
Environmental exposure of fish to steroid hormones through wastewater and agricultural runoff may pose a health risk. Thus far, ecotoxicological studies have largely been focused on the disruption of the sex hormone system, but additional effects have been poorly investigated. Here we report on the effects of a series of different natural and synthetic steroid hormones on the locomotor behavior and the transcriptional levels of core clock genes in zebrafish eleuthero-embryos (Danio rerio). Of the 20 steroids analyzed, progestins and corticosteroids, including progesterone and cortisol, significantly decreased the locomotor activities of eleuthero-embryos at concentrations as low as 16 ng/L, while estrogens such as 17β-estradiol led to an increase. Consistently, progestins and corticosteroids displayed similar transcriptional effects on core clock genes, which were remarkably different from those of estrogens. Of these genes, per1a and nr1d2a displayed the most pronounced alterations. They were induced upon exposure to various progestins and corticosteroids and could be recovered using the progesterone receptor/glucocorticoid receptor antagonist mifepristone; this, however, was not the case for estrogens and the estrogen receptor antagonist 4-hydroxy-tamoxifen. Our results suggest that steroid hormones can modulate the circadian molecular network in zebrafish and provide novel insights into their mode of actions and potential environmental risks.
اظهر المزيد [+] اقل [-]Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China
2011
Gao, Zhiling | Yuan, Huijun | Ma, Wenqi | Liu, Xuejun | Desjardins, R.L.
Accurately determining methane emission factors of dairy herd in China is imperative because of China’s large population of dairy cattle. An inverse dispersion technique in conjunction with open-path lasers was used to quantify methane emissions from a dairy feedlot during the fall and winter seasons in 2009–2010. The methane emissions had a significant diurnal pattern during both periods with three emission peaks corresponding to the feeding schedule. A 10% greater emission rate in the fall season was obtained most likely by the higher methane emission from manure during that period. An annual methane emission rate of 109 ± 6.7 kg CH₄ yr⁻¹ characterized with a methane emission intensity of 32.3 ± 1.59 L CH₄ L⁻¹ of milk and a methane conversion factor (Yₘ) of 7.3 ± 0.38% for mature cattle was obtained, indicating the high methane emission intensity and low milk productivity in Northern China.
اظهر المزيد [+] اقل [-]Increasing risk for negative ozone impacts on vegetation in northern Sweden
2007
Karlsson, P.E. | Tang, L. | Sundberg, J. | Chen, D. | Lindskog, A. | Pleijel, H.
Trends were found for increasing surface ozone concentrations during April-September in northern Sweden over the period 1990-2006 as well as for an earlier onset of vegetation growing season. The highest ozone concentrations in northern Sweden occurred in April and the ozone concentrations in April showed a strong increasing trend. A model simulation of ozone flux for Norway spruce indicated that the provisional ozone flux based critical level for forests in Europe is exceeded in northern Sweden. Future climate change would have counteracting effects on the stomatal conductance and needle ozone uptake, mediated on the one hand by direct effect of increasing air temperatures and on the other through increasing water vapour pressure difference between the needles and air. Thus, there is a substantial and increasing risk for negative impacts of ozone on vegetation in northern Sweden, related mainly to increasing ozone concentrations and an earlier onset of the growing season. Increasing risks for ozone impacts on vegetation in northern Sweden.
اظهر المزيد [+] اقل [-]Comparison of different stomatal conductance algorithms for ozone flux modelling
2007
Büker, P. | Emberson, L.D. | Ashmore, M.R. | Cambridge, H.M. | Jacobs, C.M.J. | Massman, W.J. | Müller, J. | Nikolov, N. | Novak, K. | Oksanen, E.
A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221-224.] algorithm for calculating stomatal conductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An).
اظهر المزيد [+] اقل [-]Exogenous melatonin protects preimplantation embryo development from decabromodiphenyl ethane-induced circadian rhythm disorder and endogenous melatonin reduction
2022
Shi, Feifei | Qiu, Jinyu | Zhang, Shaozhi | Zhao, Xin | Feng, Daofu | Feng, Xizeng
Decabromodiphenyl ethane (DBDPE) is a novel flame retardant that is widely used in plastics, electronic products, building materials and textiles. Our previous studies have revealed the oocyte toxicity of DBDPE, but the effect of DBDPE on preimplantation embryo development has not been reported. Here, we investigated whether and how DBDPE exposure affects preimplantation embryo development. Adult female mice were orally exposed to DBDPE (0, 5, 50, 500 μg/kg bw/day) for 14 days. First, we found that after DBDPE exposure, mice showed obvious circadian rhythm disorder. Moreover, the development of preimplantation embryos was inhibited in DBDPE-exposed mice after pregnancy. Then, we further explored and revealed that DBDPE exposure reduced the endogenous melatonin (MLT) level during pregnancy, thereby inhibiting the development of preimplantation embryos. Furthermore, we discovered that exogenous MLT supplementation (15 mg/kg bw/day) rescued the inhibition of preimplantation embryo development induced by DBDPE, and a mechanistic study demonstrated that exogenous MLT inhibited the overexpression of ROS and DNA methylation at the 5-position of cytosine (5-mC) in DBDPE-exposed preimplantation embryos. Simultaneously, MLT ameliorated the DBDPE-induced mitochondrial dysfunction by increasing the mitochondrial membrane potential (MMP), ATP, and Trp1 expression. Additionally, MLT restored DBDPE-induced changes in zona pellucida (ZP) hardness and trophectoderm (TE) cortical tension. Finally, the protective effect of MLT on embryos ameliorated the adverse reproductive outcomes (dead fetus, fetus with abnormal liver, fetal weight loss) induced by DBDPE. Collectively, DBDPE induced preimplantation embryo damage leading to adverse reproductive outcomes, and MLT has emerged as a potential tool to rescue adverse reproductive outcomes induced by DBDPE.
اظهر المزيد [+] اقل [-]The role of light pollution in mammalian metabolic homeostasis and its potential interventions: A critical review
2022
Guan, Qingyun | Wang, Zixu | Cao, Jing | Dong, Yulan | Chen, Yaoxing
Irregular or unnatural artificial light causes severe environmental stress on the survival and health of organisms, which is rapidly becoming a widespread new type of environmental pollution. A series of disruptive behaviors to body homeostasis brought about by light pollution, including metabolic abnormalities, are likely to be the result of circadian rhythm disturbances. Recently, the proposed role of light pollution in metabolic dysregulation has accelerated it into an emerging field. Hence, the regulatory role of light pollution in mammalian metabolic homeostasis is reviewed in this contribution. Light at night is the most widely affected type of light pollution, which disrupts metabolic homeostasis largely due to its disruption of daily food intake patterns, alterations of hormone levels such as melatonin and glucocorticoids, and changes in the rhythm of inflammatory factor production. Besides, light pollution impairs mammalian metabolic processes in an intensity-, photoperiod-, and wavelength-dependent manner, and is also affected by species, gender, and diets. Nevertheless, metabolic disorders triggered by light pollution are not irreversible to some extent. Potential interventions such as melatonin supplementation, recovery to the LD cycle, time-restricted feeding, voluntary exercise, wearing blue light-shied goggles, and bright morning light therapy open a bright avenue to prevent light pollution. This work will help strengthen the relationship between light information and metabolic homeostasis and provide new insights for the better prevention of metabolic disorders and light pollution.
اظهر المزيد [+] اقل [-]