خيارات البحث
النتائج 1 - 10 من 33
Dynamics in imidacloprid sorption related to changes of soil organic matter content and quality along a 20-year cultivation chronosequence of citrus orchards
2021
Zheng, Taihui | Hu, Tong | Zhang, Jie | Tang, Chongjun | Duan, Jian | Song, Yuejun | Zhang, Qin
The on-going and extensive use of neonicotinoids occur in orchards. However, it is still unknown whether and how orchard management affects soil properties, especially the contents and structure of soil organic matter during orchard development, and their further influences on neonicotinoid persistence. Here, surface soil samples were collected from the citrus orchards with different cultivation ages (1, 10, 14, and 20 years), and their physicochemical properties were determined. Changes in the chemical structure of soil organic matter (SOM) were furtherly examined using solid-state CP/TOSS ¹³C NMR. Then, the sorption isotherms of imidacloprid in these soils were investigated. The sorption coefficient (Kd) of imidacloprid at Cₑ of 0.05 mg/L in the orchard soils increased by 19.4–23.3%, along a 20-year chronosequence of cultivation, which should be mainly ascribed to the increase of SOM. However, the organic carbon-normalized sorption coefficient (Kₒc, sorption per unit mass of OM) of imidacloprid declined with increasing cultivation ages. Moreover, the polar and aliphatic domains of SOM had a significantly positive relation to the Kₒc of imidacloprid, suggesting its key role in governing imidacloprid sorption. The results highlighted that reasonable management measures could be adopted to control the occurrence and fate of neonicotinoids in soils, mainly by affecting the content and quality of SOM.
اظهر المزيد [+] اقل [-]Land-use type affects N2O production pathways in subtropical acidic soils
2018
Zhang, Yushu | Ding, Hong | Zheng, Xiangzhou | Ren, Xiangyun | Cardenas, L. (Laura) | Carswell, Alison | Misselbrook, T. (Tom)
The change in land-use from woodland to crop production leads to increased nitrous oxide (N2O) emissions. An understanding of the main N2O sources in soils under a particular land can be a useful tool in developing mitigation strategies. To better understand the effect of land-use on N2O emissions, soils were collected from 5 different land-uses in southeast China: shrub land (SB), eucalyptus plantation (ET), sweet potato farmland (SP), citrus orchard (CO) and vegetable growing farmland (VE). A stable isotope experiment was conducted incubating soils from the different land use types at 60% water holding capacity (WHC), using 15NH4NO3 and NH415NO3 to determine the dominant N2O production pathway for the different land-uses. The average N2O emission rates for VE, CO and SP were 5.30, 4.23 and 3.36 μg N kg−1 dry soil d−1, greater than for SB and ET at 0.98 and 1.10 μg N kg−1 dry soil d−1, respectively. N2O production was dominated by heterotrophic nitrification for SB and ET, accounting for 51 and 50% of N2O emissions, respectively. However, heterotrophic nitrification was negligible (<8%) in SP, CO and VE, where autotrophic nitrification was a primary driver of N2O production, accounting for 44, 45 and 66% for SP, CO and VE, respectively. Denitrification was also an important pathway of N2O production across all land-uses, accounting for 35, 35, 49, 52 and 32% for SB, ET, SP, CO and VE respectively. Average N2O emission rates via autotrophic nitrification, denitrification and heterotrophic nitrification increased significantly with gross nitrification rates, NO3− contents and C:N ratios respectively, indicating that these were important factors in the N2O production pathways for these soils. These results contribute to our understanding and ability to predict N2O emissions from different land-uses in subtropical acidic soils and in developing potential mitigation strategies.
اظهر المزيد [+] اقل [-]Ozone deposition to an orange orchard: Partitioning between stomatal and non-stomatal sinks
2012
Fares, Silvano | Weber, Robin | Park, Jeong-Hoo | Gentner, Drew | Karlik, Jan | Goldstein, Allen H.
Orange trees are widely cultivated in regions with high concentrations of tropospheric ozone. Citrus absorb ozone through their stomata and emit volatile organic compounds (VOC), which, together with soil emissions of NO, contribute to non-stomatal ozone removal. In a Valencia orange orchard in Exeter, California, we used fast sensors and eddy covariance to characterize water and ozone fluxes. We also measured meteorological parameters necessary to model other important sinks of ozone deposition. We present changes in magnitude of these ozone deposition sinks over the year in response to environmental parameters. Within the plant canopy, the orchard constitutes a sink for ozone, with non-stomatal ozone deposition larger than stomatal uptake. In particular, soil deposition and reactions between ozone, VOC and NO represented the major sinks of ozone. This research aims to help the development of metrics for ozone-risk assessment and advance our understanding of citrus in biosphere-atmosphere exchange.
اظهر المزيد [+] اقل [-]High-frequency monitoring of neonicotinoids dynamics in soil-water systems during hydrological processes
2022
Niu, Y.H. | Wang, L. | Wang, Z. | Yu, S.X. | Zheng, J.Y. | Shi, Z.H.
Neonicotinoids pollution poses a serious threat to aquatic ecosystems. However, there is currently little knowledge about how neonicotinoids are transferred from the agricultural environment to the aquatic environment. Here, we conducted in situ high-frequency monitoring of neonicotinoids in soil-water systems along the hydrological flow path during rainfall to explore the horizontal and vertical transport mechanisms of neonicotinoids. The collected samples included 240 surface runoff, 128 subsurface runoff, 60 eroded sediment, 120 soil and 144 soil solution, which were used to analyse neonicotinoids concentrations. Surface runoff, subsurface runoff and eroded sediment were the three main paths for the horizontal migration of neonicotinoids. In the CK (citrus orchards without grass cover) and grass-covered citrus orchards, there are 15.89% and 2.29% of the applied neonicotinoids were transported with surface runoff, respectively. While in the CK and grass-covered citrus orchards, there are only 1.23% and 0.19% of the applied neonicotinoids were transported with eroded sediment and subsurface runoff. Although the amount of neonicotinoids lost along with eroded sediment was small, the concentration of neonicotinoids in eroded sediment was two orders of magnitude higher than the concentration of neonicotinoids in sediments of the surface water. Meanwhile, neonicotinoids migrated vertically in soil due to water infiltration. In the CK and grass-covered citrus orchards, there are 57.64% and 24.36% of the applied neonicotinoids were retained in soil and soil solution, respectively, and their concentration decreased as soil depth increased. Another noteworthy phenomenon is that more neonicotinoids migrated to deeper soil layers under grass cover compared with no grass cover because grass roots promoted the formation of cracks and vertical preferential flow. Our results are expected to improve the accuracy of neonicotinoids pollution prediction by considering migration paths, including surface and subsurface runoff and eroded sediment.
اظهر المزيد [+] اقل [-]Fungicide application can intensify clay aggregation and exacerbate copper accumulation in citrus soils
2021
Dao, Trang T. | Tran, Thu T.T. | Nguyen, Anh M. | Nguyen, Ly N. | Pham, Phuong T.M. | Tsubota, Toshiki | Nguyen, Minh N.
Fungicide application for controlling fungal diseases can increase copper (Cu) accumulation in soil. More urgently, Cu released from fungicides can associate with soil clay and favour the mutual aggregation of Cu and soil clay, thereby potentially intensifying the accumulation of Cu. We investigated the effects of Cu salt and six common Cu-based fungicides on colloidal dynamics of a clay fraction from citrus cultivated soil. Batch experiments were carried out to provide the loading capacity of the clay fraction for Cu. The colloidal dynamic experiments were performed over a pH range from 3 to 8 following a test tube method, while surface charge, the key electrochemical factor of the solid-liquid interface, was quantified by a particle charge detector. It was found that all the studied fungicides, via releasing Cu²⁺, acted to effectively favour clay aggregation. The dissolved organic matter obtained from the dissolution of polymers in fungicides can theoretically stimulate clay dispersion. However, their effects were obscured due to the overwhelming effect of Cu²⁺. Therefore, Cu²⁺ appears as the most active agent in the fungicides that intensifies clay aggregation. These findings imply that the intensive application of fungicides for plant protection purposes can inadvertently reduce clay mobility, favour the co-aggregation of clay and fungicides, and hence potentially exacerbate the contamination of the citrus soil.
اظهر المزيد [+] اقل [-]Rates of particulate pollution deposition onto leaf surfaces: Temporal and inter-species magnetic analyses
2010
Mitchell, R. | Maher, B.A. | Kinnersley, R.
Evaluation of health impacts arising from inhalation of pollutant particles <10 μm (PM10) is an active research area. However, lack of exposure data at high spatial resolution impedes identification of causal associations between exposure and illness. Biomagnetic monitoring of PM10 deposited on tree leaves may provide a means of obtaining exposure data at high spatial resolution. To calculate ambient PM10 concentrations from leaf magnetic values, the relationship between the magnetic signal and total PM10 mass must be quantified, and the exposure time (via magnetic deposition velocity (MVd) calculations) known. Birches display higher MVd (∼5 cm−1) than lime trees (∼2 cm−1). Leaf saturation remanence values reached ‘equilibrium’ with ambient PM10 concentrations after ∼6 ‘dry’ days (<3 mm/day rainfall). Other co-located species displayed within-species consistency in MVd; robust inter-calibration can thus be achieved, enabling magnetic PM10 biomonitoring at unprecedented spatial resolution.
اظهر المزيد [+] اقل [-]Exploring the potential of biobeds for the depuration of pesticide-contaminated wastewaters from the citrus production chain: Laboratory, column and field studies
2012
Omirou, M. | Dalias, P. | Costa, C. | Papastefanou, C. | Dados, A. | Ehaliotis, C. | Karpouzas, D.G.
The high wastewater volumes produced during citrus production at pre- and post-harvest level presents serious pesticide point-source pollution for groundwater bodies. Biobeds are used for preventing such point-source pollution occurring at farm level. We explored the potential of biobeds for the depuration of wastewaters produced through the citrus production chain following a lab-to-field experimentation. The dissipation of pesticides used pre- or post-harvest was studied in compost-based biomixtures, soil, and a straw-soil mixture. A biomixture of composted grape seeds and skins (GSS-1) showed the highest dissipation capacity. In subsequent column studies, GSS-1 restricted pesticides leaching even at the highest water load (462Lm⁻³). Ortho-phenylphenol was the most mobile compound. Studies in an on-farm biobed filled with GSS-1 showed that pesticides were fully retained and partially or fully dissipated. Overall biobeds could be a valuable solution for the depuration of wastewaters produced at pre- and post-harvest level by citrus fruit industries.
اظهر المزيد [+] اقل [-]Irrigation with treated wastewater and its effect on the Castellon Plain aquifer (Spain)
1993
Esteller, M.V. | Morell, I. (Natural Resources and Environmental Research Group, Experimental Sciences Department, Jaime I University, Castellon (Spain))
Traits Driving Tolerance to Atmospheric Fluoride Pollution in Tree Crops
2016
Mesquita, Geisa Lima | Mattos, Dirceu, Jr | Tanaka, Francisco A Ossamo | Cantarella, Heitor | Zambrosi, Fernando C Bachiega | Machado, Eduardo Caruso
Increased emissions of fluoride into the atmosphere contribute to reducing the sustainability of agricultural systems worldwide. In order to improve the understanding of the factors behind such phenomenon, varieties of citrus (Citrus spp.), Valencia sweet-orange, Ponkan mandarin, and Lisbon lemon and coffee (Coffea spp.), Obatã, Catuai, and Apoatã, were treated with fluoride nebulization. The trees were exposed to nebulization for 60 min inside a chamber by using medium (0.04 mol L⁻¹) and high (0.16 mol L⁻¹) doses of fluoridic acid (HF) during three nonconsecutive days in a single week, for a total of 26 days of exposure during the experiment. Sixty days after beginning nebulization, we evaluated leaf gas exchange, (ultra)structural organization, tree growth, and fluoride and nutrient concentrations in plant tissue. Photosynthesis and leaf dry mass of citrus and coffee varieties were affected differently by fluoride toxicity, and based on the tolerance index (relative leaf dry mass of control versus leaf dry mass of trees treated with 0.16 mol L⁻¹ HF), the order of sensitivity for the varieties of each species was as follows: for citrus, lemon > mandarin > sweet-orange; and for coffee, Apoatã > Catuaí > Obatã. The ability of the trees to control fluoride absorption most likely explained this contrast in sensitivity among varieties because both photosynthesis and leaf growth were negatively correlated with leaf fluoride concentration. Although disorganization of the thylakoids, degeneration of vascular cells, and disruption of the middle lamella occurred in leaves of all varieties exposed to fluoride, the more severe damage was observed in those with greater sensitivity to the pollutant (i.e., lemon and Apoatã coffee). Taken together, these results provided insights into the factors that explain poor performance of citrus and coffee trees under fluoride pollution and also revealed the traits driving the tolerance of these crops such a limiting condition, which included a combination of the following: (i) reduced fluoride absorption, (ii) increased photosynthesis, and (iii) improved maintenance of the ultrastructural organization of leaves.
اظهر المزيد [+] اقل [-]Dissolved Organic Carbon in Association with Water Soluble Nutrients and Metals in Soils from Lake Okeechobee Watershed, South Florida
2012
Yang, Y. G. | He, Z. L. | Wang, Y. B. | Liu, Y. L. | Liang, Z. B. | Fan, J. H. | Stoffella, P. J.
Water quality of Lake Okeechobee has been a major environmental concern for many years. Transport of dissolved organic matter (DOM) in runoff water from watershed is critical to the increased inputs of nutrients (N and P) and metals (Cu and Zn). In this study, 124 soil samples were collected with varying soil types, land uses, and soil depths in Lake Okeechobee watershed and analyzed for water-extractable C, N, P, and metals to examine the relationship between dissolved organic carbon (DOC) and water soluble nutrients (N and P) and metals in the soils. DOC in the soils was in 27.64–400 mg kg⁻¹ (69.30 mg kg⁻¹ in average) and varied with soil types, land uses, and soil depth. The highest water-extractable DOC was found in soils collected in sugar cane and field crops (277 and 244 mg kg⁻¹ in average, respectively). Water soluble concentrations of N and P were in the range of 6.46–129 and 0.02–60.79 mg kg⁻¹, respectively. The ratios of water-extractable C/N and C/P in soils were in 0.68–12.52 (3.23 in average) and 3.19–2,329 (216 in average), and varied with land uses. The lowest water-extractable C/N was observed in the soils from dairy (1.66), resident (1.79), and coniferous forest (4.49), whereas the lowest water-extractable C/P was with the land uses of dairy (13.1) and citrus (33.7). Therefore, N and P in the soils under these land uses may have high availability and leaching potential. The concentrations of water soluble Co, Cr, Cu, Ni, and Zn were in the ranges of < method detection limit (MDL)–0.33, <MDL–0.53, 0.04–2.42, <MDL–0.71, and 0.09–1.13 mg kg⁻¹, with corresponding mean values of 0.02, 0.01, 0.50, 0.07, and 0.37 mg kg⁻¹, respectively. The highest water soluble Co (0.10 mg kg⁻¹), Cr (0.26 mg kg⁻¹), Ni (0.31 mg kg⁻¹), and Zn (0.80 mg kg⁻¹) were observed in soils under the land use of sugar cane, whereas the highest Cu (1.50 mg kg⁻¹) was with field crop. The concentration of DOC was positively correlated with total organic carbon (TOC) (P <0.01), water soluble N (P <0.01), electrical conductivity (EC, P <0.01), and water soluble Co, Cr, Ni, and Zn (P <0.01), and Cu (P <0.05), whereas water soluble N was positively correlated with water soluble P, Cu, and Zn (P <0.01) in soils. These results indicate that the transport of DOC from land to water bodies may correlate with the loss of macro-nutrients (N, P), micro-nutrients (Cu, Zn, and Ni), and contaminants (Cr and Co) as well.
اظهر المزيد [+] اقل [-]