خيارات البحث
النتائج 1 - 10 من 676
Global climatic changes: modelling the potential responses of agro-ecosystems with special reference to crop protection.
1995
Goudriaan J. | Zadoks J.C.
Appraising regional anthropogenic heat flux using high spatial resolution NTL and POI data: A case study in the Beijing-Tianjin-Hebei region, China النص الكامل
2022
Wang, Yichen | Hu, Deyong | Yu, Chen | Di, Yufei | Wang, Shasha | Liu, Manqing
Rapid urbanization and the aggregation of human activities in cities have resulted in large amounts of anthropogenic heat (AH) emission, which affects urban climate. Quantifying and assessing the AH emission values accurately and analyzing their spatial distribution characteristics is important to understand the energy exchange processes of urban areas. In this study, the high spatial resolution anthropogenic heat flux (AHF) quantification and spatial distribution analysis were conducted using multi-source data in the Beijing-Tianjin-Hebei region (BTH region) of China. First, the AH emission in district and city level were estimated using inventory method based on energy consumption and socio-economic statistical data; Then, AHF spatial quantification models were constructed based on high spatial resolution nighttime light (NTL) data and Point of interests (POI) data, and 130 m × 130 m gridded AHF quantification result in BTH region was realized; Finally, the potential numerical and spatial distribution patterns of AHF were analyzed using various indicators including contribution rate and aggregation index. The results show that: (1) The parameterized index constructed based on NTL and POI data shows a strong correlation with AHF, with R² ranging from 0.79 to 0.94 and a mean absolute error (MAE) value of 0.72 w·m⁻², which can be applied to the quantification of gridded AHF values with high resolution. The highest total AHF in the study area is 214 w·m⁻², and the average value is 2.24 w·m⁻². (2) Considering the sources of AHF, industrial emission sources in BTH region contribute the most to the total AHF, but commercial building emission sources in Beijing have a higher contribution, which can reach 33.8%. (3) Different types of AHF have different spatial aggregation levels. Commercial building emission and human metabolic emission have the highest aggregation level, and transportation emission has the lowest aggregation level.
اظهر المزيد [+] اقل [-]Characteristics, source apportionment and long-range transport of black carbon at a high-altitude urban centre in the Kashmir valley, North-western Himalaya النص الكامل
2022
Bhat, Mudasir Ahmad | Romshoo, Shakil Ahmad | Beig, Gufran
Six years of data (2012–2017) at an urban site-Srinagar in the Northwest Himalaya were used to investigate temporal variability, meteorological influences, source apportionment and potential source regions of BC. The daily BC concentration varies from 0.56 to 40.16 μg/m³ with an inter-annual variation of 4.20–7.04 μg/m³ and is higher than majority of the Himalayan urban locations. High mean annual BC concentration (6.06 μg/m³) is attributed to the high BC observations during winter (8.60 μg/m³) and autumn (8.31 μg/m³) with a major contribution from Nov (13.88 μg/m³) to Dec (13.4 μg/m³). A considerable inter-month and inter-seasonal BC variability was observed owing to the large changes in synoptic meteorology. Low BC concentrations were observed in spring and summer (3.14 μg/m³ and 3.21 μg/m³), corresponding to high minimum temperatures (6.6 °C and 15.7 °C), wind speed (2.4 and 1.6 m/s), ventilation coefficient (2262 and 2616 m²/s), precipitation (316.7 mm and 173.3 mm) and low relative humidity (68% and 62%). However, during late autumn and winter, frequent temperature inversions, shallow PBL (173–1042 m), stagnant and dry weather conditions cause BC to accumulate in the valley. Through the observation period, two predominant diurnal BC peaks were observed at ⁓9:00 h (7.75 μg/m³) and ⁓21:00 h (6.67 μg/m³). Morning peak concentration in autumn (11.28 μg/m³) is ⁓2–2.5 times greater than spring (4.32 μg/m³) and summer (5.23 μg/m³), owing to the emission source peaks and diurnal boundary layer height. Diurnal BC concentration during autumn and winter is 65% and 60% higher than spring and summer respectively. During autumn and winter, biomass burning contributes approximately 50% of the BC concentration compared to only 10% during the summer. Air masses transport considerable BC from the Middle East and northern portions of South Asia, especially the Indo-Gangetic Plains, to Srinagar, with serious consequences for climate, human health, and the environment.
اظهر المزيد [+] اقل [-]Attributed radiative forcing of air pollutants from biomass and fossil burning emissions النص الكامل
2022
Jiang, Ke | Fu, Bo | Luo, Zhihan | Xiong, Rui | Men, Yatai | Shen, Huizhong | Li, Bengang | Shen, Guofeng | Tao, Shu
Energy is vital to human society but significantly contributes to the deterioration of environmental quality and the global issue of climate change. Biomass and fossil fuels are important energy sources but have distinct pollutant emission characteristics during the burning process. This study aimed at attributing radiative forcing of climate forcers, including greenhouse gases but also short-lived climate pollutants, from the burning of fossil and biomass fuels, and the spatiotemporal characteristics. We found that air pollutant emissions from the burning process of biofuel and fossil fuels induced RFs of 68.2 ± 36.8 mW m⁻² and 840 ± 225 mW m⁻², respectively. The relatively contribution of biomass burning emissions was 7.6% of that from both fossil and biofuel combustion processes, while its contribution in energy supply was 11%. These relative contributions varied obviously across different regions. The per unit energy consumption of biomass fuel in the developed regions, such as North America (0.57 ± 0.33 mW m⁻²/10⁷TJ) and Western Europe (0.98 ± 0.79 mW m⁻²/10⁷TJ), had higher impacts of combustion emission related RFs compared to that of developing regions, like China (0.40 ± 0.26 mW m⁻²/10⁷TJ), and South and South-East Asia (0.31 ± 0.71 mW m⁻²/10⁷TJ) where low efficiency biomass burning in residential sector produced significant amounts of organic matter that had a cooling effect. Note that the study only evaluated fuel combustion emission related RFs, and those associated with the production of fuels and land use change should be studied later in promoting a comprehensive understanding on the climate impacts of biomass utilization.
اظهر المزيد [+] اقل [-]The effects of different temperatures in mercury toxicity to the terrestrial isopod Porcellionides pruinosus النص الكامل
2022
Morgado, Rui G. | Pereira, Andreia | Cardoso, Diogo N. | Prodana, Marija | Malheiro, Catarina | Silva, Ana Rita R. | Vinhas, André | Soares, Amadeu M.V.M. | Loureiro, Susana
Climate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms. Here, toxicity and bioaccumulation experiments were replicated at 15 °C, 20 °C, and 25 °C to understand how sub-optimal temperatures affect the toxicokinetics and toxicodynamics of Hg via soil. Genotoxicity and energy reserves were also assessed to disclose potential trade-offs in life-history traits. Results underpin the complexity of temperature-Hg interactions. Survival was determined mainly by toxicokinetics, but toxicodynamics also played a significant role in defining survival probability during early stages. The processes determining survival probability were faster at 25 °C: General Unified Threshold of Survival (GUTS) model identified an earlier/steeper decline in survival, compared to 20 °C or 15 °C, but it also approached the threshold faster. Despite potentiation of Hg genotoxicity, temperature promoted faster detoxification, either increasing toxicokinetics rates or damage repair mechanisms. This metabolism-driven increase in detoxification led to higher depletion of energy reserves and likely triggered stress response pathways. This work emphasized the need for comprehensive experimental approaches that can integrate the multiple processes involved in temperature-metal interactions.
اظهر المزيد [+] اقل [-]Dual-carbon isotope constraints on source apportionment of black carbon in the megacity Guangzhou of the Pearl River Delta region, China for 2018 autumn season النص الكامل
2022
Jiang, Fan | Liu, Junwen | Cheng, Zhineng | Ding, Ping | Xu, Yuanqian | Zong, Zheng | Zhu, Sanyuan | Zhou, Shengzhen | Yan, Caiqing | Zhang, Zhisheng | Zheng, Junyu | Tian, Chongguo | Li, Jun | Zhang, Gan
Black carbon (BC) aerosol negatively affects air quality and contributes to climate warming globally. However, little is known about the relative contributions of different source control measures to BC reduction owing to the lack of powerful source-diagnostic tools. We combine the fingerprints of dual-carbon isotope using an optimized Bayesian Markov chain Monte Carlo (MCMC) scheme and for the first time to study the key sources of BC in megacity Guangzhou of the Pearl River Delta (PRD) region, China in 2018 autumn season. The MCMC model-derived source apportionment of BC shows that the dominant contributor is petroleum combustion (39%), followed by coal combustion (34%) and biomass burning (27%). It should be noted that the BC source pattern is highly sensitive to the variations of air masses transported with an enhanced contribution of fossil source from the eastern area, suggesting the important impact of regional atmospheric transportation on the BC source profile in the PRD region. Also, we further found that fossil fuel combustion BC contributed 84% to the total BC reduction during 2013–2018. The response of PM₂.₅ concentration to the ¹⁴C-derived BC source apportionment is successfully fitted (r = 0.90) and the results predicted that it would take ∼6 years to reach the WHO PM₂.₅ guideline value (10 μg m⁻³) for the PRD region if the emission control measures keep same as they are at present. Taken together, our findings suggest that dual-carbon isotope is a powerful tool in constraining the source apportionment of BC for the evaluations of air pollution control and carbon emission measures.
اظهر المزيد [+] اقل [-]Multi-type emission factors quantification of black carbon from agricultural machinery based on the whole tillage processes in China النص الكامل
2022
Wu, Bobo | Wu, Zichun | Yao, Zhiliang | Li, Jiahan | Wang, Weijun | Shen, Xianbao | Hao, Xuewei
Black carbon (BC), as one of the short-lived climate pollutants, is becoming more prominent contribution from non-road mobile source, especially for agricultural machinery (AM) in China. However, the understanding of BC emissions from AM is still not clear, and the BC emission factors (EFs) are also limited. In this study, we conducted real-world measurements on twenty AM to investigate the instantaneous BC emission characteristics and quantify BC EFs under the whole tillage processes. We find the instantaneous BC emissions and fuel consumptions are obvious differences and present good synchronization under different tillage processes. Multi-type (CO₂-, fuel-, distance-, time-, and area-based) EFs of BC are developed, which are significantly affected by different tillage processes and emission standards of the used AM. While AM conducting rotary tillage, ploughing, harvest corn and harvest wheat on the same area of land, total BC emissions by using the China III emission standard AM will be reduced by 56%, 36%, 88%, and 87% than those by using China II emission standard AM, respectively. Furthermore, for corn and wheat production under the whole tillage processes, BC EFs are 16.90 (6.03–39.12) g/hm² and 18.18 (5.91–38.69) g/hm², CO₂ EFs are 112.64 (72.07–195.98) g/hm² and 103.72 (71.47–167.02) g/hm², respectively. We estimate the BC and CO₂ emissions from wheat and corn productions based on the average area-based EFs. The large fluctuation ranges of BC and CO₂ emissions in different tillage processes and the whole processes can reflect that the use of AM in China is uneven. It also indicates that there is a large space for BC and CO₂ emission reduction and optimization. Therefore, more attention should be paid to the control of BC and CO₂ emissions from AM. We believe that the recommended multi-type EFs are applicable for the quantification of BC emissions from AM in China and other countries.
اظهر المزيد [+] اقل [-]Variations in source contributions of particle number concentration under long-term emission control in winter of urban Beijing النص الكامل
2022
Shang, Dongjie | Tang, Lizi | Fang, Xin | Wang, Lifan | Yang, Suding | Wu, Zhijun | Chen, Shiyi | Li, Xin | Zeng, Limin | Guo, Song | Hu, Min
Many studies revealed the rapid decline of atmospheric PM₂.₅ in Beijing due to the emission control measures. The variation of particle number concentration (PN) which has important influences on regional climate and human health, however, was rarely reported. This study measured the particle number size distributions (PNSD) in 3–700 nm in winter of Beijing during 2013–2019. It was found that PN decreased by 58% from 2013 to 2017, but increased by 29% from 2017 to 2019. By Positive matrix factorization (PMF) analysis, five source factors of PNSD were identified as Nucleation, Fresh traffic, Aged traffic + Diesel, Coal + biomass burning and Secondary. Overall, factors associated with primary emissions were found to decrease continuously. Coal + biomass burning dominated the reduction (65%) among the three primary sources during 2013–2017, which resulted from the great efforts on emission control of coal combustion and biomass burning. Fresh traffic and Aged traffic + Diesel decreased by 43% and 66%, respectively, from 2013 to 2019, as a result of the upgrade of the vehicle emission standards in Beijing-Tianjin-Hebei area. On the other hand, the contribution from Nucleation and Secondary decreased with the reduction of gaseous precursors in 2013–2017, but due to the increased intensity of new particle formation (NPF) and secondary oxidation, they increased by 56% and 70%, respectively, from 2017 to 2019, which led to the simultaneously increase of PN and particle volume concentration. This study indicated that NPF may play an important role in urban atmosphere under continuous air quality improvement.
اظهر المزيد [+] اقل [-]Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau النص الكامل
2021
Zhang, Chao | Chen, Meilian | Kang, Shichang | Yan, Fangping | Han, Xiaowen | Gautam, Sangita | Hu, Zhaofu | Zheng, Huijun | Chen, Pengfei | Gao, Shaopeng | Wang, Pengling | Li, Yizhong
Carbonaceous particles play an important role in climate change, and an increase in their emission and deposition causes glacier melting in the Himalayas and the Tibetan Plateau (HTP). This implies that studying their basic characteristics is crucial for a better understanding of the climate forcing observed in this area. Thus, we investigated characteristics of carbonaceous particles at a typical remote site of southeastern HTP. Organic carbon and elemental carbon concentrations at this study site were 1.86 ± 0.84 and 0.18 ± 0.09 μg m⁻³, respectively, which are much lower than those reported for other frequently monitored stations in the same region. Thus, these values reflect the background characteristics of the study site. Additionally, the absorption coefficient per mass (α/ρ) of water-soluble organic carbon (WSOC) at 365 nm was 0.60 ± 0.19 m² g⁻¹, with the highest and lowest values corresponding to the winter and monsoon seasons, respectively. Multi-dimensional fluorescence analysis showed that the WSOC consisted of approximately 37% and 63% protein and humic-like components, respectively, and the latter was identified as the component that primarily determined the light absorption ability of the WSOC, which also showed a significant relationship with some major ions, including SO²⁻₄, K⁺, and Ca²⁺, indicating that combustion activities as well as mineral dust were two important contributors to WSOC at the study site.
اظهر المزيد [+] اقل [-]