خيارات البحث
النتائج 1 - 10 من 80
Metagenomic analysis of urban wastewater resistome and mobilome: A support for antimicrobial resistance surveillance in an endemic country
2021
Rodríguez, Erika A. | Ramirez, Diego | Balcázar, José L. | Jiménez, J Natalia
In developing countries, where high levels of antimicrobial resistance are observed in hospitals, the surveillance of this phenomenon in wastewater treatment plants (WWTPs) and the environment is very limited, especially using cutting-edge culture-independent methods. In this study, the composition of bacterial communities, the resistome and mobilome (the pool of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), respectively) at a WWTP were determined using shotgun metagenomics and culture-based approaches. Wastewater samples were collected at four sampling points of a WWTP in Antioquia, Colombia. A total of 24 metagenomes were analyzed. Specifically, there were marked differences in bacterial community composition, resistome, and mobilome, according to the WWTP sampling points. Bacterial families of clinical importance such as Moraxellaceae, Aeromonadaceae, and Enterobacteriaceae were mainly detected in the WWTP influent and effluent samples. Genes encoding resistance to macrolide-lincosamide-streptogramin, β-lactams, and those conferring multidrug resistance (e.g., acrB, adeG, and mexD) were the most abundant. Moreover, some clinically important ARGs such as blaKPC₋₂ and blaCTX₋M, and others not reported locally, such as blaTEM₋₁₉₆, blaGES₋₂₃, blaOXA₋₁₀, mcr-3, and mcr-5 were frequently detected. Co-occurrence network analyses indicated a significant association of ARGs such as blaOXA₋₅₈ and blaKPC genes with Aeromonadaceae and Enterobacteriaceae. Among the markers of MGEs, intI1 and ISCR8 were the most frequently detected. Altogether, this work reveals the importance of shotgun metagenomics and culture-based approaches in antimicrobial resistance studies. The findings also support that WWTPs are hotspots for antimicrobial resistance, whose analysis constitutes a powerful tool to predict the impact of antimicrobial resistance in a population.
اظهر المزيد [+] اقل [-]Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia)
2018
Ramírez R., Omar | Sánchez de la Campa, A.M. | Amato, F. (Fulvio) | Catacolí, Ruth A. | Rojas, Néstor Y. | Rosa, Jesús de la
Bogota registers frequent episodes of poor air quality from high PM₁₀ concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM₁₀ source contribution. A characterization of the chemical composition and the source apportionment of PM₁₀ at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO₄²⁻, Cl⁻, NO₃⁻, NH₄⁺), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM₁₀ components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM₁₀, high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM₁₀) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM₁₀ source, accounting for ∼50% of the PM₁₀. The results provided novel data about PM₁₀ chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods.
اظهر المزيد [+] اقل [-]Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems
2013
Seguí, X. | Pujolasus, E. | Betrò, S. | Àgueda, A. | Casal, J. | Ocampo-Duque, W. | Rudolph, I. | Barra, R. | Páez, M. | Barón, E. | Eljarrat, E. | Barceló, D. | Darbra, R.M.
We developed a model for evaluating the environmental risk of persistent organic pollutants (POPs) to aquatic organisms. The model is based on fuzzy theory and uses information provided by international experts through a questionnaire. It has been tested in two case studies for a particular type of POPs: brominated flame retardants (BFRs). The first case study is related to the EU-funded AQUATERRA project, with sampling campaigns carried out in two Ebro tributaries in Spain (the Cinca and Vero Rivers). The second one, named the BROMACUA project, assessed different aquatic ecosystems in Chile (San Vicente Bay) and Colombia (Santa Marta Marsh). In both projects, the BFRs under study were polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). However, the model can be extrapolated to other POPs and to different aquatic ecosystems to provide useful results for decision-makers.
اظهر المزيد [+] اقل [-]Air Quality Standards for Particulate Matter (PM) at high altitude cities
2013
Bravo Alvarez, H. | Sosa Echeverria, R. | Sanchez Alvarez, P. | Krupa, S.
The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume.This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru.If these corrections are not considered, the atmospheric concentrations will be underestimated.
اظهر المزيد [+] اقل [-]Marine protected areas in Latin America and Caribbean threatened by polycyclic aromatic hydrocarbons
2021
Nunes, Beatriz Zachello | Zanardi-Lamardo, Eliete | Choueri, Rodrigo Brasil | Castro, Ítalo Braga
The present study is a literature-based analysis investigating occurrence and the possible consequences of polycyclic aromatic hydrocarbons (PAH) in marine protected areas (MPAs) of Latin America and Caribbean. The approach using overlapping of georeferenced MPA polygons with data compiled from peer-reviewed literature, published during the last 15 years, showed 341 records of PAH in 9 countries. PAH was reported to occur within the boundaries of 36 MPAs located in Argentina, Brazil, Colombia, Mexico, Nicaragua and Uruguay. According to quality guidelines, low to moderate impacts are expected in MPAs categorized in different management classes. Considering sediment samples, 13% of the records presented concentrations enough to cause occasional toxicity. Such level of risk was also seen in Ramsar sites and in Amazonian MPAs. In addition, based on concentrations reported in biota, occasional deleterious effects on organisms from Biosphere Reserves might occur. Diagnostic ratios pointed out petrogenic and pyrolytic processes as PAH predominant sources, and were mainly attributed to the proximity to ports, industries and urban areas. MPAs located in the vicinity of impact-generating areas may be under threat and require government attention and action, mainly through implementation of contamination monitoring programs.
اظهر المزيد [+] اقل [-]Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability
2019
GilPavas, Edison | Correa-Sánchez, Santiago | Acosta, Diego A.
A Fenton like advanced oxidation process (AOP) employing scrap zerovalent iron (SZVI) and hydrogen peroxide (H2O2) was studied for industrial textile wastewater treatment from a textile manufacturing plant located at Medellín, Colombia (South America). The wastewater effluent studied contains a mixture of organic compounds resistant to conventional treatments. The effect of initial pH and SZVI concentration and H2O2 concentration were studied by a response surface methodology (RSM) Box-Behnken design of experiment (BBD). The combined SZVI/H2O2 process led to reductions of 95% color, 76% of chemical oxygen demand (COD) and 71% of total organic carbon (TOC) at optimal operating conditions of pH = 3, SZVI = 2000 mg/L and [H2O2] = 24.5 mM. Molecular weight distribution measurement (MWD), ultraviolet–visible (UV–Vis) spectroscopy, HPLC, biodegradability and toxicity were used to characterize the pollutants after the treatment process finding that the resulting effluent was polluted mostly by low molecular weight carboxylic acids. A remarkable biodegradability enhancement of the effluent was evidenced by a BOD5/COD ratio increase from 0.22 to 0.4; also, the SZVI/H2O2 process successfully reduced the toxicity from 60% to 20% of dead A. Salina crustaceans.
اظهر المزيد [+] اقل [-]Short-term joint effects of ambient air pollutants on emergency department visits for respiratory and circulatory diseases in Colombia, 2011–2014
2019
Rodríguez-Villamizar, Laura Andrea | Rojas-Roa, Néstor Yezid | Fernández-Niño, Julián Alfredo
We evaluated the short-term effect of mixtures of ambient air pollutants on respiratory and circulatory morbidity in four Colombian cities.Daily Emergency Department (ED) visit records for respiratory and circulatory selected diagnosis and daily concentrations for six criteria air pollutant were obtained in four of the five major cities in Colombia: Bucaramanga, Bogota, Cali, and Medellin during 2011–2014. Using conditional Poisson time series analysis with fixed effects, we assessed the effect of air pollutants on health outcomes using single-pollutant, two-pollutant and specific mixtures-of-pollutant models controlling for meteorology and time trends. The percentages of change in the rate of ED visits and their 95% confidence interval were estimated for the joint effect of pollutants.In single-pollutant models increases in gases concentrations were associated with increases in ED visits for respiratory and circulatory diseases. The two-pollutant models for respiratory diseases showed that the effect of NO₂ alone (% change 2.86 95% CI 1.87–3.85) is higher than the joint effect of any of its combinations except for its combination with SO₂ (% change 3.05 95%CI 1.04–5.05). The two-pollutant models for circulatory diseases showed synergistic effects between NO₂ and PM₂.₅ (% change 2.13 95%CI 0.001–4.26). Specific mixtures models showed that the mixture of “traffic-related pollutants” has the higher joint effect on circulatory morbidity and respiratory morbidity.The results show the dominant effect of NO₂ in air pollution mixtures on respiratory and circulatory morbidity, and the synergistic effect of NO₂ and SO₂ in air pollution mixtures on respiratory morbidity.
اظهر المزيد [+] اقل [-]Characterization of a multianalyte GC-MS/MS procedure for detecting and quantifying polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives from air particulate matter for an improved risk assessment
2019
Mueller, Andrea | Ulrich, Nadin | Hollmann, Josef | Zapata Sanchez, Carmen E. | Rolle-Kampczyk, Ulrike E. | von Bergen, Martin
A correct description of the concentration and distribution of particle bound polycyclic aromatic hydrocarbons is important for risk assessment of atmospheric particulate matter. A new targeted GC-MS/MS method was developed for analyzing 64 PAHs including compounds with a molecular weight >300, as well as nitro-, methyl-, oxy- and hydroxyl derivatives in a single analysis. The instrumental LOD ranged between 0.03 and 0.7 pg/μL for PAHs, 0.2–7.9 pg/μL for hydroxyl and oxy PAHs, 0.1–7.4 pg/μL for nitro PAHs and 0.06–0.3 pg/μL for methyl-PAHs. As an example for the relevance of this method samples of PM₁₀ were collected at six sampling sites in Medellin, Colombia, extracted and the concentration of 64 compounds was determined. The 16 PAHs from the EPA priority list contributed only from 54% to 69% to the sum of all analyzed compounds, PAH with high molecular weight accounted for 8.8%–18.9%. Benzo(a)pyrene equivalents (BaPₑq) were calculated for the estimation of the life time cancer (LCR). The LCR according to the samples ranged from 2.75 × 10⁻⁵ to 1.4 × 10⁻⁴ by a calculation with toxic equivalent factors (TEF) and 5.7 × 10⁻⁵ to 3.8 × 10⁻⁴ with potency equivalent factor (PEF). By using the new relative potency factors (RPF) recommended by US Environmental Protection Agency (U.S.EPA) the LCR ranged from 1.3 × 10⁻⁴ to 7.2 × 10⁻⁴. Hence, it was around six times higher than the well-known TEF. The novel method enables the reliable quantification of a more comprehensive set of PAHs bound on PM and thus will facilitate and improve the risk assessment of them.
اظهر المزيد [+] اقل [-]Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific
2020
Palacios-Torres, Yuber | de la Rosa, Jesus D. | Olivero-Verbel, Jesus
The Atrato watershed is a rainforest that supports exceptional wildlife species and is considered one of the most biodiversity-rich areas on the planet, currently threatened by massive gold mining. Aimed to protect this natural resource, the Constitutional Court of Colombia declared the river subject to rights. The objective of this study was to quantify trace elements in sediments and fish from Atrato watershed, assessing their environmental and human health risk. Forty-two trace elements were quantified using ICP-MS. Thirty-one elements increased their concentration downstream the river. Concentration Factors (CF) suggest sediments were moderately polluted by Cr, Cu, Cd, and strongly polluted by As. Most stations had Cr (98%) and Ni (78%) concentrations greater than the Probable Effect Concentration (PEC) criteria. Together, toxic elements generate a Pollution Load Index (PLI) and a Potential Ecological Risk Index (RI) that categorized 54% of the sediments as polluted, and 90% as moderate polluted, respectively. Hemiancistrus wilsoni, a low trophic guild fish species, had the greater average levels for Ni, Cu, As and Cd, among other elements. Rubidium and Cs showed a positive correlation with fish trophic level, suggesting these two metals biomagnify in the food chain. The Hazard Quotient (HQ) for As was greater than 1 for several species, indicating a potential risk to human health. Collectively, data suggest gold mining carried out in this biodiversity hotspot releases toxic elements that have abrogated sediment quality in Atrato River, and their incorporation in the trophic chain constitutes a large threat on environmental and human health due to fish consumption. Urgent legal and civil actions should be implemented to halt massive mining-driven deforestation to enforce Atrato River rights.
اظهر المزيد [+] اقل [-]Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH
2020
Muskus, Angelica M. | Krauss, Martin | Miltner, Anja | Hamer, Ute | Nowak, Karolina M.
Glyphosate is one of the most used herbicides in the world. The fate of glyphosate in tropical soils may be different from that in soils from temperate regions. In particular, the amounts and types of non-extractable residues (NER) may differ considerably, resulting in different relative contributions of xenoNER (sorbed and sequestered parent compound) and bioNER (biomass residues of degraders). In addition, environmental conditions and agricultural practices leading to total organic carbon (TOC) or pH variation can alter the degradation of glyphosate. The aim of this study is thus to investigate how the glyphosate degradation and turnover are influenced by varying temperature, pH and TOC of sandy loam soil from Colombia. The pH or TOC of a Colombian soil was modified to yield five treatments: control (pH 7.0, TOC 3%), 4% TOC, 5% TOC, pH 6.5, and pH 5.5. Each treatment received 50 mg kg⁻¹ of ¹³C₃¹⁵N-glyphosate and was incubated at 10 °C, 20 °C and 30 °C for 40 days. Rising temperature increased the mineralization of ¹³C₃¹⁵N-glyphosate from 13 to 20% (10 °C) to 32–39% (20 °C) and 41–51% (30 °C) and decreased the amounts of extractable ¹³C₃¹⁵N-glyphosate after 40 days of incubation from 13 to 26% (10 °C) to 4.6–12% (20 °C) and 1.2–3.2% (30 °C). Extractable ¹³C₃¹⁵N-glyphosate increased with higher TOC and higher pH. Total ¹³C-NER were similar in all treatments and at all temperatures (47%–60%), indicating that none of the factors studied affected the amount of total ¹³C-NER. However, ¹³C-bioNER dominated within the ¹³C-NER pool in the control and the 4% TOC treatment (76–88% of total ¹³C-NER at 20 °C and 30 °C), whereas in soil with 5% TOC and pH 6.5 or 5.5 ¹³C-bioNER were lower (47–61% at 20 °C and 30 °C). In contrast, the ¹⁵N-bioNER pool was small (between 14 and 39% of the ¹⁵N-NER). Thus, more than 60% of ¹⁵N-NER is potentially hazardous xenobiotic NER which need careful attention in the future.
اظهر المزيد [+] اقل [-]