خيارات البحث
النتائج 1 - 10 من 33
A common fungicide tebuconazole promotes colitis in mice via regulating gut microbiota النص الكامل
2022
Meng, Zhiyuan | Sun, Wei | Liu, Wan | Wang, Yu | Jia, Ming | Tian, Sinuo | Chen, Xiaojun | Zhu, Wentao | Zhou, Zhiqiang
As a common fungicide, tebuconazole are ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of exposure to tebuconazole on colitis in mice and explored its underlying mechanism. Specifically, exposure to tebuconazole could cause structural damage and inflammatory cell infiltration in colon tissue, activate the expression of inflammation-related genes, disrupt the expression of barrier function-related genes, and induce the colonic inflammation in mice. Similarly, exposure to tebuconazole could also exacerbate DSS-induced colitis in mice. In addition, we found that tebuconazole also could change the composition of the gut microbiota. In particular, tebuconazole significantly increases the relative abundance of Akkermansia of mice. Moreover, tebuconazole resulted in metabolic profiles disorders of the serum, leading to significant changes in the relative contents of metabolites involving glycolipid metabolism and amino acid metabolism. Particularly, the results of the gut microbiota transplantation experiment showed that exposure to tebuconazole could induced colonic inflammation in mice in a gut microbiota–dependent manner. Taken together, these results indicated that tebuconazole could induce colitis in mice via regulating gut microbiota. Our findings strongly support the concept that the gut microbiota is a key trigger of inflammatory bowel disease caused by pesticide intake.
اظهر المزيد [+] اقل [-]Effect of gut microbiota on in vitro bioaccessibility of heavy metals and human health risk assessment from ingestion of contaminated soils النص الكامل
2021
Yin, Naiyi | Zhao, Yongli | Wang, Pengfei | Du, Huili | Yang, Mei | Han, Zeliang | Chen, Xiaochen | Sun, Guoxin | Cui, Yanshan
To identify the role of gut microbiota in human health risk assessment, the bioaccessibility of heavy metals in 14 soil samples were determined in simulated gastrointestinal fluids. Compared to the small intestinal phase, the bioaccessibility values of the colon phase varied, either increased by 3.5-fold for As, by 2.2-fold for Cr, and by 1.6-fold for Ni, or reduced by 4.4-fold for Cu, respectively. The colon incubation with adult gut microbiota yielded higher bioaccessibility value of As (1.3 times) and Fe (3.4 times) than that of the child in most soil samples. Colon bioaccessibility was about 60% greater of Cd for the adult and 30% higher of Cr for the child. Congruent data on the bioaccessibility of Cu and Ni was observed. In addition, correlation analysis indicated that in vitro bioaccessibility was primarily related to total concentrations of heavy metals in soils, followed by soil pH and active Fe/Mn oxide. Significantly, risk assessment calculated based on colon bioaccessibility indicated that the target hazard quotient (THQ > 1) of As was presented in 3 soil samples for the adult (1.05–3.35) and in 9 soil samples for the child (1.06–26.93). The hazard index (HI) of the child was 4.00 on average, greater than that of the adult (0.62), primarily due to the contribution of As and Cd. It suggested non-carcinogenic risks are likely to occur in children through typical hand-to-mouth behavior. The adjustment of colon bioaccessibility will result in more accurate risk assessment of human exposure to heavy metals from oral ingestion of contaminated soils.
اظهر المزيد [+] اقل [-]The inflammation response and risk associated with aflatoxin B1 contamination was minimized by insect peptide CopA3 treatment and act towards the beneficial health outcomes النص الكامل
2021
Dey, Debasish Kumar | Chang, Sukkum Ngullie | Kang, S. C. (Sun Chul)
This study focused on the possible chemo-preventive effects of insect peptide CopA3 on normal human colon cells against the inflammation induced by the toxic environmental pollutant aflatoxin B1 (AFB1). In the study, we used CCD 841 CoN normal human colon cells to investigate the cytotoxic effect induced by AFB1 and elucidated the negative impact of AFB1 exposure on the cell cycle progression. Further, we also carried out the in-vivo experiment, where male BALB/c mice were administrated with AFB1 to induce inflammation associated cancer like phenotype and the dietary effect of CopA3 was evaluated on the early stages of AFB1-induced hepatotoxicity and inflammation in colon tissues. At the initiation stage, CopA3 was given along with water, which significantly decreased the inflammation in the liver and colon of AFB1 exposed mice model. Mice that received CopA3 alone showed enhanced activity of several antioxidant enzymes. In the post treatment stage, the CopA3 dosage remarkably increased the Ki-67 protein expression, indicating the enhancement in cell proliferation event and increased the number of apoptotic cells in colonic crypts, suggesting the capability of CopA3 treatment towards the epithelial cell turnover. Thus, CopA3 treatment shows its potential to inhibit the development of the early stages of AFB1-induced colon inflammation and hepatotoxicity in mice by inhibiting the DNA synthesis of the damaged and inflammatory cell and induced apoptosis for the clearance of damaged cells. Collectively, the results of this study suggest that CopA3 treatment may play a protective role against the mycotoxin induced inflammation.
اظهر المزيد [+] اقل [-]In vitro model insights into the role of human gut microbiota on arsenic bioaccessibility and its speciation in soils النص الكامل
2020
Chi, Haifeng | Hou, Yanwei | Li, Guofeng | Zhang, Youchi | Coulon, Frédéric | Cai, Chao
The bioaccessibility of arsenic and its speciation are two important factors in assessing human health risks exposure to contaminated soils. However, the effects of human gut microbiota on arsenic bioaccessibility and its speciation are not well characterized. In this study, an improved in vitro model was utilized to investigate the bioaccessibility of arsenic in the digestive tract and the role of human gut microbiota in the regulation of arsenic speciation. For all soils, arsenic bioaccessibility from the combined in vitro model showed that it was <40% in the gastric, small intestinal and colon phases. This finding demonstrated that the common bioaccessibility approach assuming 100% bioaccessibility would overestimate the human health risks posed by contaminated soils. Further to this, the study showed that arsenic bioaccessibility was 22% higher in the active colon phase than that in the sterile colon phase indicating that human colon microorganisms could induce arsenic release from the solid phase. Only inorganic arsenic was detected in the gastric and small intestinal phases, with arsenate [As(V)] being the dominant arsenic species (74%–87% of total arsenic). Arsenic speciation was significantly altered by the active colon microbiota, which resulted in the formation of methylated arsenic species, including monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] with low toxicity, and a highly toxic arsenic species monomethylarsonous acid [MMA(III)]. Additionally, a high level of monomethylmonothioarsonic acid [MMMTA(V)] (up to 17% of total arsenic in the extraction solution) with unknown toxicological properties was also detected in the active colon phase. The formation of various organic arsenic species demonstrated that human colon microorganisms could actively metabolize inorganic arsenic into methylated arsenicals and methylated thioarsenicals. Such transformation should be considered when assessing the human health risks associated with oral exposure to soil.
اظهر المزيد [+] اقل [-]Toxic effects and mechanisms of three commonly used fungicides on the human colon adenocarcinoma cell line Caco-2 النص الكامل
2020
Tao, Huaping | Bao, Zhiwei | Jin, Cuiyuan | Miao, Wenyu | Fu, Zhengwei | Jin, Yuanxiang
Fungicides, usually refer to the chemical agents that can effectively control or kill the pathogenic microorganisms. Here, we revealed the effects of three different fungicides, imazalil (IMZ), chlorothalonil (CTL) and carbendazim (CBZ), which are typical broad-spectrum fungicides that are detected at high levels in the natural environment, on heterogeneous human epithelial colorectal cells (Caco-2 cells). All three fungicides had the potential to induce different degrees of toxicity, cause apoptosis, reactive oxygen species (ROS) and even change the cell cycle in the cells. The half maximal inhibitory concentration (IC50) of CTL is the lowest among these three fungicides, suggesting that it may have the highest exposure risk, followed by IMZ, and CBZ. The results of the real-time PCR, Western blotting, and mitochondrial membrane potential (MMP) assays and the activities of key enzymes suggested that CTL induced apoptosis in Caco-2 cells via a mitochondrial-dependent pathway, as indicated by the upregulation of the expression of the apoptotic p53 and bax genes, the increase of the apoptosis marker cytochrome-c, the decrease of mRNA level of bcl-2 gene, and the decrease in the MMP. Exposure to two other fungicides also upregulated the transcriptional level of bax and the expression of cytochrome-c, but the mRNA level of bcl-2 was increased (IMZ) or unchanged (CBZ), suggesting that other pathways may be involved in the induction of cellular apoptosis by these two fungicides. In addition, all three of the fungicides could induce oxidative stress in Caco-2 cells. Our data showed that the three different kinds of fungicides all caused toxic effects in Caco-2 cells through various pathways.
اظهر المزيد [+] اقل [-]Subchronic exposure of environmentally relevant concentrations of F-53B in mice resulted in gut barrier dysfunction and colonic inflammation in a sex-independent manner النص الكامل
2019
Pan, Zihong | Yuan, Xianling | Tu, Wenqing | Fu, Zhengwei | Jin, Yuanxiang
F-53B (6:2 chlorinated polyfluorinated ether sulfonate) is currently recognized as a safe alternative to long-chain PFASs in China. However, an increasing number of studies have recently authenticated its biotoxicological effects. In this study, for evaluating the gut toxicity of F-53B in mammals, both female and male mice were orally exposed to 0, 1, 3, or 10 μg/L F-53B for 10 weeks. Our results showed that F-53B significantly accumulated in the colon, ileum and serum when exposed to 10 μg/L F-53B for 10 weeks. F-53B exposure not only increased the transcriptional levels of ion transport-related genes but could also interact with the CFTR protein directly. Interestingly, subchronic F-53B exposure also increased the transcription of mucus secretion-related genes, but the protein level of Muc2 decreased after F-53B exposure, indicating that there was a compensatory phenomenon after mucus barrier injury. Furthermore, F-53B exposure also induced colonic inflammation associated with gut microbiota dysbiosis in the colon. Taken together, our results indicated that the potential gut toxicity of F-53B and almost all of the changed parameters were significantly affected in both female and male mice, suggesting that F-53B could disturb the gut barrier without sex dependence in mice.
اظهر المزيد [+] اقل [-]Is there sufficient ‘sink’ in current bioaccessibility determinations of organic pollutants in soils? النص الكامل
2013
Collins, C.D. | Mosquera-Vazquez, M. | Gomez-Eyles, J.L. | Mayer, P. | Gouliarmou, V. | Blum, F.
Bioaccessibility tests can be used to improve contaminated land risk assessments. For organic pollutants a ‘sink’ is required within these tests to better mimic their desorption under the physiological conditions prevailing in the intestinal tract, where a steep diffusion gradient for the removal of organic pollutants from the soil matrix would exist. This is currently ignored in most PBET systems. By combining the CEPBET bioaccessibility test with an infinite sink, the removal of PAH from spiked solutions was monitored. Less than 10% of spiked PAH remained in the stomach media after 1 h, 10% by 4 h in the small intestine compartment and c.15% after 16 h in the colon. The addition of the infinite sink increased bioaccessibility estimates for field soils by a factor of 1.2–2.8, confirming its importance for robust PBET tests. TOC or BC were not the only factors controlling desorption of the PAH from the soils.
اظهر المزيد [+] اقل [-]Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon النص الكامل
2022
Zhu, Shi-quan | Liu, Jing | Han, Bo | Zhao, Wen-peng | Zhou, Bian-hua | Zhao, Jing | Wang, Hong-wei
Colon microenvironment and microbiota dysbiosis are closely related to various human metabolic diseases. In this study, a total of 72 healthy female mice were exposed to fluoride (F) (0, 25, 50 and 100 mg/L F⁻) in drinking water for 70 days. The effect of F on intestinal barrier and the diversity and composition in colon microbiota have been evaluated. Meanwhile, the relationship among F-induced colon microbiota alterations and antimicrobial peptides (AMPs) expression and short-chain fatty acids (SCFAs) level also been assessed. The results suggested that F decreased the goblet cells number and glycoprotein expression in colon. And further high-throughput 16S rRNA gene sequencing result demonstrated that F exposure induced the diversity and community composition of colonic microbiota significantly changes. Linear Discriminant Analysis Effect Size (LEfSe) analysis identified 11 predominantly characteristic taxa which may be the biomarker in response to F exposure. F-induced intestinal microbiota perturbations lead to the significantly decreased SCFAs levels in colon. Immunofluorescence results showed that F increased the protein expression of interleukin-17A (IL-17A) and IL-22 (P < 0.01) and disturbed the expression of interleukin-17 receptor A (IL-17RA) and IL-22R (P < 0.05 or P < 0.01). In addition, the increased expression of IL-17A and IL-22 cooperatively enhanced the mRNA expression of AMPs which response to F-induced microbiota perturbations. Collectively, destroyed microenvironment and disturbed AMPs are the primary reason of microbiota dysbiosis in colon after F exposure. Colonic homoeostasis imbalance would be helpful for finding the source of F-induced chronic systemic diseases.
اظهر المزيد [+] اقل [-]Bioaccessibility of arsenic from contaminated soils and alteration of the gut microbiome in an in vitro gastrointestinal model النص الكامل
2022
Griggs, Jennifer L. | Ji, Liang | Hanley, Nancy M. | Kohan, Michael | Herbin-Davis, Karen | Thomas, David J. | Lu, Kun | Fry, Rebecca C. | Bradham, Karen D.
Arsenic exposure has been reported to alter the gut microbiome in mice. Activity of the gut microbiome derived from fecal microbiota has been found to affect arsenic bioaccessibility in an in vitro gastrointestinal (GI) model. Only a few studies have explored the relation between arsenic exposure and changes in the composition of the gut microbiome and in arsenic bioaccessibility. Here, we used simulated GI model system (GIMS) containing a stomach, small intestine, colon phases and microorganisms obtained from mouse feces (GIMS-F) and cecal contents (GIMS-C) to assess whether exposure to arsenic-contaminated soils affect the gut microbiome and whether composition of the gut microbiome affects arsenic bioaccessibility. Soils contaminated with arsenic did not alter gut microbiome composition in GIMS-F colon phase. In contrast, arsenic exposure resulted in the decline of bacteria in GIMS-C, including members of Clostridiaceae, Rikenellaceae, and Parabacteroides due to greater diversity and variability in microbial sensitivity to arsenic exposure. Arsenic bioaccessibility was greatest in the acidic stomach phase of GIMS (pH 1.5–1.7); except for GIMS-C colon phase exposed to mining-impacted soil in which greater levels of arsenic solubilized likely due to microbiome effects. Physicochemical properties of different test soils likely influenced variability in arsenic bioaccessibility (GIMS-F bioaccessibility range: 8–37%, GIMS-C bioaccessibility range: 2–18%) observed in this study.
اظهر المزيد [+] اقل [-]Perfluorooctane sulfonic acid (PFOS) inhibits vessel formation in a human 3D co-culture angiogenesis model (NCFs/HUVECs) النص الكامل
2022
Forsthuber, Martin | Widhalm, Raimund | Granitzer, Sebastian | Kaiser, Andreas Marius | Moshammer, Hanns | Hengstschläger, Markus | Dolznig, Helmut | Gundacker, Claudia
Perfluorooctane sulfonic acid (PFOS) is a ubiquitous environmental pollutant. In humans, PFOS exposure has been associated with a number of adverse health outcomes, including reduced birth weight. Whether PFOS is capable of affecting angiogenesis and thus possibly fetal development is unknown. Therefore, we investigated 1) the metabolic activity of PFOS-exposed endothelial cells (human umbilical vein endothelial cells, HUVECs), fibroblasts (normal colon fibroblasts, NCFs), and epithelial cells (human colorectal carcinoma cells, HCT116), 2) PFOS-specific inhibition of vascular endothelial growth factor receptor (VEGFR)2 stimulation in KDR/NFAT-RE HEK293 cells, and 3) the antiangiogenic potential of PFOS in a 3D in vitro angiogenesis model of HUVECs and NCFs. In terms of metabolic activity, endothelial cells (HUVECs) were much more sensitive to PFOS than fibroblasts (NCFs) or epithelial cells (HCT116). VEGFR2 signaling in KDR/NFAT-RE HEK293 cells decreased with increasing PFOS concentrations. In co-culture (angiogenesis assay), PFOS treatment resulted in a dose-dependent reduction in tip and branch formation, tip length (μm), and total structural area (μm²) with stable metabolic activity of HUVECs up to high concentrations. We conclude that PFOS possesses antiangiogenic properties. Inhibition of VEGFR2 signaling indicates a possible mechanism of action that can be linked to an existing Adverse Outcome Pathway (AOP43) containing the AO reduced birth weight. Further studies are needed to confirm PFOS-specific adverse effects on angiogenesis, placental perfusion, and fetal growth.
اظهر المزيد [+] اقل [-]