خيارات البحث
النتائج 1 - 10 من 90
The contribution of ammonia emissions from agriculture to the deposition of acidifying and eutrophying compounds onto forests.
1989
Draaijers G.P.J. | Ivens W.P.M.F. | Bos M.M. | Bleuten W.
Solubilisation du fluor par acidolyse des argiles.
1986
Bardy E.A. | Pere C.
De la foret polluee a la foret deperissante.
1986
Garrec J.P.
Description et fonctionnement d' une station automatique de prelevements sequentiels et d' etude des pluies.
1986
Dubois J. | Ducourroy A. | Martin C. | Masniere P.
Changes in fruitbody production of mycorrhizal and litter decomposing macromycetes in heavy metal polluted coniferous forests in north Sweden.
1990
Ruehling A. | Soederstroem B.
Ozone symptoms in native herbaceous species in Southern Alps: field assessment and laboratory verification
2002
Gerosa, G. (Universita degli Studi, Milano (Italy). DiProVe) | Marzuoli, R. | Cesana, V. | Ballarin-Denti A. | Bussotti, F.
Small attention has been still addressed to the study of ozone effects on seminatural vegetation. Following this direction we selected an ozone heavily exposed area in Northern Italy, where the development of visible injuries on leaves of common pasture herbs were observed. The selected area, an alpine pasture located at Moggio belongs to the Level II permanent monitoring network of the ICP-Forest program. The ozone exposure mapping exercise made on the whole regional domain estimated for this area an AOT40f of 32000 ppb.h as 1999 and 2000 years average
اظهر المزيد [+] اقل [-]Response of coniferous ecosystems to reduction of SO2 and NOx emission in last decade in Poland
2002
Staszewski, T. (Institute for Ecology of Industrial Areas, Katowice (Poland)) | Uzieblo, A. | Kubiesa, P. | Lukasik, W. | Szdzuj, J.
Five permanent plots in pine and spruce stands were established at beginning of the 90s. The sites were situated in a gradient of air pollution level, from the south to the north of Poland. There are presented changes in SO2 and NO2 concentration in the air as well as loads of acidic compounds and the exceedance of critical loads in the period of 1993-2001. Response of the forest ecosystems was evaluated by changes in health status of trees and changes in biodiversity at forest permanent plots. The comparative study revealed an improvement in the health condition of trees and a tendency of ecosystems to regenerate due to greater than 30% decrease in emission in the last decade
اظهر المزيد [+] اقل [-]Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China
2018
Xie, Danni | Si, Gaoyue | Zhang, Ting | Mulder, Jan | Duan, Lei
Nitrous oxide (N₂O) is a major greenhouse gas, with elevated emission being reported from subtropical forests that receive high nitrogen (N) deposition. After 10 years of monthly addition of ammonium nitrate (NH₄NO₃) or sodium nitrate (NaNO₃) to a Mason pine forest at Tieshanping, near Chongqing city in Southwest China, the simulated N deposition was stopped in October 2014. The results of soil N₂O emissions monitoring in different seasons during the nitrogen application period showed that nitrogen addition significantly increased soil N₂O emission. In general, the N₂O emission fluxes were positively correlated to nitrate (NO₃⁻) concentrations in soil solution, supporting the important role of denitrification in N₂O production, which was also modified by environmental factors such as soil temperature and moisture. After stopping the application of nitrogen, the soil N₂O emissions from the treatment plots were no longer significantly higher than those from the reference plots, implying that a decrease in nitrogen deposition in the future would cause a decrease in N₂O emission. Although the major forms of N deposition, NH₄⁺ and NO₃⁻, had not shown significantly different effects on soil N₂O emission, the reduction in NH₄⁺ deposition may decrease the NO₃⁻ concentrations in soil solution faster than the reduction in NO₃⁻ deposition, and thus be more effective in reducing N₂O emission from N-saturated forest soil in the future.
اظهر المزيد [+] اقل [-]Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation
2009
Choi, Hyun-Deok | Holsen, Thomas M.
Mercury (Hg) emissions from the soils taken from two different sites (deciduous and coniferous forests) in the Adirondacks were measured in outdoor and laboratory experiments. Some of the soil samples were irradiated to eliminate biological activity. The result from the outdoor measurements with different soils suggests the Hg emission from the soils is partly limited by fallen leaves covering the soils which helps maintain relatively high soil moisture and limits the amount of heat and solar radiation reaching the soil surface. In laboratory experiments exposure to UV-A (365 nm) had no significant effect on the Hg emissions while the Hg emissions increased dramatically during exposure to UV-B (302 nm) light suggesting UV-B directly reduced soil-associated Hg. Overall these results indicate that for these soils biotic processes have a relatively constant and smaller influence on the Hg emission from the soil than the more variable abiotic processes. Hg emission measurements from soils indicate that abiotic processes were more important than biotic processes in reducing Hg and controlling emissions.
اظهر المزيد [+] اقل [-]Forest health research on a natural air pollution gradient in the San Bernardino Mountains, Southern California
2002
Arbaugh, M.J. | Alonso, R. | Bytnerowicz, A. (USDA Forest Service, Riverside (USA). Pacific Southwest Research Station)
Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation and increase carbon sequestration rates in heavily polluted forests
اظهر المزيد [+] اقل [-]