خيارات البحث
النتائج 1 - 10 من 12
Assessment of microplastics in oysters in coastal areas of Taiwan
2021
Liao, Chun-Pei | Chiu, Ching-Chun | Huang, Hsiang-Wen
Microplastic contamination in ecosystems has emerged as an environmental issue of global significance. This research quantified microplastics in oysters from 22 sites along Taiwan coastlines. In total, 6630 microplastic items were found in 660 oysters of two genera (Crassostrea and Saccostrea). The average content of microplastics was 3.24 ± 1.02 items/g (wet weight), ranging from 0.63 ± 0.52 items/g to 37.94 ± 19.22 items/g. Over half of the microplastics were smaller than 100 μm, and the most common shape was fragments (67%), followed by fibers (29%). The dominant color was transparent (49.76%), followed by black (25.66%). Polymer types were identified using a μRaman microscope, and the major component was polyethylene terephthalate (PET) (69.54%). Microplastic contamination was higher overall in wild than in farmed oysters. In addition, the microplastic content of oysters from northeastern waters was significantly greater than that of other oysters; this result is similar to the findings of previous research on floating marine litter and beach cleaning data. The results indicated that the average content of microplastic in oysters along the Taiwan coastline was similar to that in oysters in adjacent regions. This study suggests that innovative technologies should be implemented for monitoring and removing pollution, tracking marine pollution origins, and improving accountability and that plastic limitation strategies should be strengthened.
اظهر المزيد [+] اقل [-]Elemental composition of whole body soft tissues in bivalves from the Bijagós Archipelago, Guinea-Bissau
2021
Catry, Teresa | Vale, Carlos | Pedro, Patrícia | Pereira, Eduarda | Mil-Homens, Mário | Raimundo, Joana | Tavares, Daniela | Granadeiro, José P.
Marine bivalves are bioindicators of coastal environmental pollution, integrating monitoring programs worldwide. Nonetheless, the choice of particular species as an indicator requires validation, achieved by understanding the differences in element concentrations among and within species. The present study compares the chemical composition of whole body soft tissues of four common bivalve species from the Bijagós Archipelago, a pristine region of West Africa. Significant differences were recorded in the concentrations of various elements among studied species, which likely arise from species-specific uptake and bioaccumulation processes. Overall, there was a segregation between a group including the bloody cockle Senilia senilis and oyster Crassostrea tulipa (with high Cd and Zn concentrations) versus the two other species, Austromacoma nymphalis (with low Cu and high Mn, Se, Hg, Pb concentrations) and Diplodonta spp. (with high values of Cu, Al, Fe, V, Cr, Hg, Pb). C. tulipa was sampled in two different substrates (rock beds and mangrove roots), and the two groups revealed different chemical profiles, with significantly higher concentrations of P, Si, Zn and Cr and lower Cu in specimens fixed in mangrove roots. These results strongly suggest the influence of small-scale environmental variability on the accumulation of particular elements. We found extremely high Cd concentrations in S. senilis (27.1 ± 7.53 μg g⁻¹ DW) and identified C. tulipa as another high Cd-accumulating species (ca. 10 μg g⁻¹ DW). Our results suggest a detoxifying mechanism linked with the presence of Se to reduce the potential toxic effects of Cd in these two species. Cadmium concentrations reported for some bivalve species in this area largely exceed the maximum values proposed by the European Union, emphasizing the need for a regular contamination assessment.
اظهر المزيد [+] اقل [-]A comparative study on metal contamination in Estero de Urias lagoon, Gulf of California, using oysters, mussels and artificial mussels: Implications on pollution monitoring and public health risk
2018
Ruiz-Fernández, Ana Carolina | Wu, Rudolf S.S. | Lau, Tai-Chu | Pérez-Bernal, Libia Hascibe | Sánchez-Cabeza, Joan Albert | Chiu, Jill M.Y.
The profile of 11 trace metals in two commonly used biomonitors (the native oyster Crassostrea palmula and mussel Mytella strigata) from Estero de Urias lagoon, Gulf of California, were studied for six months, covering both dry and wet seasons. Metal concentrations in these two bivalves were compared with concentrations accumulated by Artificial Mussels (AMs) deployed alongside during the same period. Significant temporal variations in Cd, Cr and Mn were observed in both bivalve species and AMs. Temporal changes were observed for Fe in both bivalve species, Pb in oyster only and Cu in both AMs and oysters, revealing seasonal changes in inputs and/or chemical forms of these metals in the lagoon. Significant correlations for Cd, Cr and Cu were found in mussels and oysters, but their Co, Fe, Mn and Zn profiles were very different, despite these two species being taxonomically closely related and often used as biomonitors for metals. Interestingly, Hg and U were detected in AMs but not in oysters and mussels. The difference in metal profile in oysters, mussels and AMs revealed in the present study clearly showed that different biomonitors and AM take up metals differentially from the same environment, and metal profile in a single biomonitor or AM alone therefore, cannot provide a good estimate on metal concentrations in the ambient environment. As such, different biomonitors and AM should be used in metal monitoring, in order to provide a comprehensive picture on metal levels in aquatic ecosystems. Concentrations of Ni and Pb in oysters, and Cr, Fe and Mn in mussels were among the highest reported in coastal waters worldwide. Concentrations of Pb in oysters exceeded legal limits set for bivalve mollusks in EU. Concentrations of Cr in mussels and oysters exceeded or were very close to, respectively, the legal limit for fish, crab-meat, oysters, prawns, and shrimps in Hong Kong. The results indicate a potential public health risk on human consumption of oysters and mussels commonly harvested from the Estero de Urias lagoon, and corresponding pollution control measures are deemed necessary.
اظهر المزيد [+] اقل [-]Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution
2016
Cao, Chen | Wang, Wen-Xiong
Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using 1H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.
اظهر المزيد [+] اقل [-]A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis
2016
The metal pollution has posed great risk on the coastal organisms along the Jiulongjiang Estuary in South China. In this work, two-dimensional electrophoresis-based proteomics was applied to the oysters Crassostrea hongkongensis from metal pollution sites to characterize the proteomic responses to metal pollution. Metal accumulation and proteomic responses indicated that the oysters from BJ site were more severely contaminated than those from FG site. Compared with those oyster samples from the clean site (JZ), metal pollution induced cellular injuries, oxidative and immune stresses in oyster heapatopancreas from both BJ and FG sites via differential metabolic pathways. In addition, metal pollution in BJ site induced disturbance in energy and lipid metabolisms in oysters. Results indicated that cathepsin L and ferritin GF1 might be the biomarkers of As and Fe in oyster C. hongkongensis, respectively. This study demonstrates that proteomics is a useful tool for investigating biological effects induced by metal pollution.
اظهر المزيد [+] اقل [-]A metabolomic investigation of the effects of metal pollution in oysters Crassostrea hongkongensis
2015
Ji, Chenglong | Wang, Qing | Wu, Huifeng | Tan, Qiaoguo | Wang, Wen-Xiong
Metal pollution has been of great concern in the estuaries in Southern China. In this study, metabolic differences between oysters Crassostrea hongkongensis from clean and metal-polluted sites were characterized using NMR-based metabolomics. We collected oyster samples from one clean (Jiuzhen) and two metal polluted sites (Baijiao and Fugong). The metal concentrations in oyster gills indicated that both the Baijiao and Fugong sites were severely polluted by several metals, including Cr, Ni, Cu, Zn, Ag, Cd and Pb. In particular, Cu and Zn were the major contaminants from the Baijiao and Fugong sites. Compared with those oysters from the clean site (JZ), metal pollution in BJ and FG induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways, as indicated by different metabolic biomarkers. This study demonstrates that NMR-based metabolomics is a useful tool for characterizing metabolic responses induced by metal pollution.
اظهر المزيد [+] اقل [-]Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India
2016
Chakraborty, Parthasarathi | Ramteke, Darwin | Gadi, Subhadra Devi | Bardhan, Pratirupa
This study established a mechanistic linkage between Cd speciation and bioavailability in mangrove system from the west coast of India. High bioaccumulation of Cd was found in the oyster (Crassostrea sp.) even at low Cd loading in the bottom sediment. Bioaccumulation of Cd in the oyster gradually increased with the increasing concentrations of water soluble, exchangeable and carbonate/bicarbonate forms of Cd in the sediments. Fe/Mn oxyhydroxide phase was found to control Cd bioavailability in the sediment system. Cd-associated with sedimentary organic matter was bioavailable and organic ligands in the sediments were poor chelating agents for Cd. This study suggests that bioaccumulation of Cd in oyster (Crassostrea sp.) depends not on the total Cd concentration but on the speciation of Cd in the system.
اظهر المزيد [+] اقل [-]Relationship between the lability of sediment-bound Cd and its bioaccumulation in edible oyster
2015
Chakraborty, Parthasarathi | Ramteke, Darwin | Chakraborty, Sucharita | Chennuri, Kartheek | Bardhan, Pratirupa
A linkage between Cd speciation in sediments and its bioaccumulation in edible oyster (Crassostrea sp.) from a tropical estuarine system was established. Bioaccumulation of Cd in edible oyster increased with the increasing lability and dissociation rate constants of Cd-sediment complexes in the bottom sediments. Total Cd concentration in sediment was not a good indicator of Cd-bioavailability. Increasing trace metal competition in sediments increased lability and bioavailability of Cd in the tropical estuarine sediment. Low thermodynamic stability and high bioavailability of Cd in the estuarine sediment were responsible for high bioaccumulation of Cd in edible oysters (3.2–12.2mgkg−1) even though the total concentration of Cd in the bottom sediment was low (0.17–0.49mgkg−1).
اظهر المزيد [+] اقل [-]Organochlorine compounds in the Portuguese oyster [Crassostrea angulata]: importance of seasonal variations
1990
Castro, O. | Ferreira, A.M. | Vale, C. (Instituto Nacional de Investigacao das Pescas, Av. Brasilia, Lisboa (Portugal))
Pacific oyster (Crassostrea gigas) hemocyte are not affected by a mixture of pesticides in short-term in vitro assays
2014
Moreau, Pierrick | Burgeot, Thierry | Renault, Tristan
Pesticides are frequently detected in estuaries among the pollutants found in estuarine and coastal areas and may have major ecological consequences. They could endanger organism growth, reproduction, or survival. In the context of high-mortality outbreaks affecting Pacific oysters, Crassostrea gigas, in France since 2008, it appears of importance to determine the putative effects of pesticides on oyster susceptibility to infectious agents. Massive mortality outbreaks reported in this species, mainly in spring and summer, may suggest an important role played by the seasonal use of pesticides and freshwater input in estuarine areas where oyster farms are frequently located. To understand the impact of some pesticides detected in French waters, their effects on Pacific oyster hemocytes were studied through short-term in vitro experiments. Bivalve immunity is mainly supported by hemocytes eliminating pathogens by phagocytosis and producing compounds including lysosomal enzymes and antimicrobial molecules. In this study, oyster hemocytes were incubated with a mixture of 14 pesticides and metaldehyde alone, a molecule used to eliminate land mollusks. Hemocyte parameters including dead/alive cells, nonspecific esterase activities, intracytoplasmic calcium, lysosome number and activity, and phagocytosis were monitored by flow cytometry. No significant effect of pesticides tested at different concentrations was reported on oyster hemocytes maintained in vitro for short-term periods in the present study. It could be assumed that these oyster cells were resistant to pesticide exposure in tested conditions and developing in vivo assays appears as necessary to better understand the effects of pollutants on immune system in mollusks.
اظهر المزيد [+] اقل [-]