خيارات البحث
النتائج 1 - 10 من 18
Effect of Heavy Metals on the Growth of Total Phytoplankton Load النص الكامل
2019
Khatun, M. | Alam, A. K. M. R.
The experiment was performed to evaluate effect of heavy metals on total phytoplankton load (TPL) using water of Turag River adjacent to Ashulia locating on the north-eastern side of Dhaka city, Bangladesh. Total phytoplankton load comprises of Euglena sp., Borodinella sp., Pediastrum biradiatum, Pinnularia sp., Fragillaria sp., Fragillaria crotonensis, Gloeocapsa sp., Navicula sp., Cynedra sp., Crucigenia sp., Chlorella sp., Spirogyra sp., Phacus acuminatus, Phacus circulatus., Nitzschia sp. and Nitzschia clausii. Phytoplankton load showed the abundances Bascillariophyceae (43.75%) > Chlorophyceae (37.50%) > Euglenophyceae (18.75%). The average maximum growth rate (log transformed) of TPL in control culture was -0.25μg/l and treated cultures using 1ppm, 3ppm, 5ppm, 7ppm concentration of heavy metals (Zn and Cu) were 0.03 μg/l, 0.03 μg/l, -0.11 μg/l and -0.26 μg/l, respectively. In treated culture using 1ppm concentration of heavy metals (Zn and Cu) the growth rate of phytoplankton load increased significantly whereas the growth rate decreased at higher concentrations (3ppm, 5ppm and 7ppm) of heavy metals. The implication of this finding can be used to monitor health of riverine ecosystems and management of river pollution.
اظهر المزيد [+] اقل [-]Biofilm influenced metal accumulation onto plastic debris in different freshwaters النص الكامل
2021
Liu, Zhilin | Adyel, Tanveer M. | Miao, Lingzhan | You, Guoxiang | Liu, Songqi | Hou, Jun
Microbial biofilms can rapidly colonize plastic debris in aquatic environments and subsequently, accumulate chemical pollutants from the surrounding water. Here, we studied the microbial colonization of different plastics, including polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE) exposed in three freshwater systems (the Qinhuai River, the Niushoushan River, and Donghu Lake) for 44 days. We also assessed the biofilm mass and associated metals attached to plastics. The plastics debris characteristics, such as contact angle and surface roughness, greatly affected the increased biofilm biomass. All types of metal accumulation onto the plastic substrate abundances significantly higher than the concentrations of heavy metal in the water column, such as Ba (267.75 μg/g vs. 42.12 μg/L, Donhu Lake), Zn (254 μg/g vs. 0.023 μg/L the Qinhuai River), and Cr (93.75 μg/g vs. 0.039 μg/L, the Niushoushan River). Compared with other metals, the heavy metal Ba, Cr and Zn accumulated easily on the plastic debris (PET, PP, PVC, and PE) at all incubation sites. Aquatic environmental factors (total nitrogen, total phosphorus, and suspended solids concentrations) largely shaped metal accumulation onto plastic debris compared with plastic debris properties.
اظهر المزيد [+] اقل [-]Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review النص الكامل
2015
Binelli, A. | Della Torre, C. | Magni, S. | Parolini, M.
One of the fundamentals in the ecotoxicological studies is the need of data comparison, which can be easily reached with the help of a standardized biological model. In this context, any biological model has been still proposed for the biomonitoring and risk evaluation of freshwaters until now. The aim of this review is to illustrate the ecotoxicological studies carried out with the zebra mussel Dreissena polymorpha in order to suggest this bivalve species as possible reference organism for inland waters. In detail, we showed its application in biomonitoring, as well as for the evaluation of adverse effects induced by several pollutants, using both in vitro and in vivo experiments. We discussed the advantages by the use of D. polymorpha for ecotoxicological studies, but also the possible limitations due to its invasive nature.
اظهر المزيد [+] اقل [-]Aging shapes the distribution of copper in soil aggregate size fractions النص الكامل
2018
Li, Qi | Du, Huihui | Chen, Wenli | Hao, Jialong | Huang, Qiaoyun | Cai, Peng | Feng, Xionghan
Soil aggregates are often considered the basic structural elements of soils. Aggregates of different size vary in their ability to retain or transfer heavy metals in the environment. Here, after incubation of a sieved (<2 mm) topsoil with copper, bulk soil was separated into four aggregate-size fractions and their adsorption characteristics for Cu were determined. By combining nano-scale secondary ion mass spectrometry and C-1s Near Edge X-ray Absorption Fine Structure Spectroscopy, we found that copper tends to bind onto organic matter in the <2 μm and 20–63 μm aggregates. Surprisingly, Cu correlated with carboxyl-C in the <2 μm aggregates but with alkyl-C in the 20–63 μm aggregates. This is the first attempt to visualize the spatial distribution of copper in aggregate size fractions. These direct observations can help improve the understanding of interactions between heavy metals and various soil components.
اظهر المزيد [+] اقل [-]Does sulfur fertilizer influence Cu migration and transformation in colloids of soil pore water from the rice (Oryza sativa L.) rhizosphere? النص الكامل
2018
Sun, Lijuan | Xue, Yong | Peng, Cheng | Xu, Chen | Shi, Jiyan
Colloids are ubiquitous in soils, and it has been reported that colloids can act as carriers to increase the mobility of poorly soluble contaminants in subsurface environments. Addition of sulfur (S) fertilizer greatly influences on heavy metal behavior in paddy soil, while the influence of S fertilizer on Cu migration and transformation in colloids of soil pore water has not yet been studied. The influence of S fertilizer (S⁰ and Na₂SO₄) applied in paddy soils on Cu migration and transformation in colloids of soil pore water from the rice rhizosphere region was explored in this study. The speciation of Cu in colloids of soil pore water from the rice rhizosphere region was explored by advanced synchrotron-based X-ray absorption near-edge spectroscopy (XANES) techniques. The morphology of colloids was characterized by field emission scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDX). At a depth of 20 cm, the concentration of Cu in colloids of the rhizosphere soil pore water in the control was 2.4- and 6.5- fold higher than that in treatments of S⁰ and Na₂SO₄, respectively. The colloids in soil pore water were all positively charged, ranging from 2.4 to 7.8 mV, and the size of colloids was 440–740 nm. The proportion of Fe in colloids in the rhizosphere region decreased with S fertilizer application, while the proportions of C and O increased. Sulfur fertilizer application, increased the proportion of Cu-Cysteine, while the proportion of Cu₂S decreased in soil colloids. In conclusion, application of sulfur fertilizer in paddy soil decreased the Cu concentration in soil pore water and colloids of the rhizosphere region, thereby decreasing the vertical migration of Cu in soil pore water.
اظهر المزيد [+] اقل [-]Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin النص الكامل
2014
Chakraborty, Parthasarathi | Sander, Sylvia G. | Jayachandran, Saranya | Nath, B Nagender | Nagaraju, G. | Chennuri, Kartheek | Vudamala, Krushna | Lathika, N. | Mascarenhas-Pereira, Maria Brenda L.
The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining.
اظهر المزيد [+] اقل [-]Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter النص الكامل
2013
Michael, S. | Montag, M. | Dott, W.
The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0–100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers.
اظهر المزيد [+] اقل [-]Environmental lead exposure risks associated with children's outdoor playgrounds النص الكامل
2013
Taylor, Mark Patrick | Camenzuli, Danielle | Kristensen, Louise Jane | Forbes, Miriam | Zahran, Sammy
This study examines exposure risks associated with lead smelter emissions at children's public playgrounds in Port Pirie, South Australia. Lead and other metal values were measured in air, soil, surface dust and on pre- and post-play hand wipes. Playgrounds closest to the smelter were significantly more lead contaminated compared to those further away (t(27.545) = 3.76; p = .001). Port Pirie post-play hand wipes contained significantly higher lead loadings (maximum hand lead value of 49,432 μg/m2) than pre-play hand wipes (t(27) = 3.57, p = .001). A 1% increase in air lead (μg/m3) was related to a 0.713% increase in lead dust on play surfaces (95% CI, 0.253–1.174), and a 0.612% increase in post-play wipe lead (95% CI, 0.257–0.970). Contaminated dust from smelter emissions is determined as the source and cause of childhood lead poisoning at a rate of approximately one child every third day.
اظهر المزيد [+] اقل [-]Bioimaging revealed contrasting organelle-specific transport of copper and zinc and implication for toxicity النص الكامل
2022
Yuan, Liuliang | Wang, Wen-Xiong
Zn and Cu are two of the essential trace elements and it is important to understand the regulation of their distribution on cellular functions. Herein, we for the first time investigated the subcellular fate and behavior of Zn and Cu in zebrafish cells through bioimaging, and demonstrated the completely different behaviors of Zn and Cu. The distribution of Zn²⁺ was concentration-dependent, and Zn²⁺ at low concentration was predominantly located in the lysosomes (76.5%). A further increase of cellular Zn²⁺ resulted in a spillover and more diffusive distribution, with partitioning to mitochondria and other regions. In contrast, the subcellular distribution of Cu⁺ was time-dependent. Upon entering the cells, Cu²⁺ was reduced to Cu⁺, which was first concentrated in the mitochondria (71.4%) followed by transportation to lysosomes (58.6%), and finally removal from the cell. With such differential transportation, Cu²⁺ instead of Zn²⁺ had a negative effect on the mitochondrial membrane potential and glutathione. Correspondingly, the pH of lysosomes was more sensitive to Zn²⁺ exposure and decreased with increasing internalized Zn²⁺, whereas it increased upon Cu²⁺ exposure. The responses of cellular pH showed an opposite pattern from the lysosomal pH. Lysosome was the most critical organelle in response to incoming Zn²⁺ by increasing its number and size, whereas Cu²⁺ reduced the lysosome size. Our study showed that Zn²⁺ and Cu²⁺ had completely different cellular handlings and fates with important implications for understanding of their toxicity.
اظهر المزيد [+] اقل [-]Personal exposure to PM2.5 constituents associated with gestational blood pressure and endothelial dysfunction النص الكامل
2019
Xia, Bin | Zhou, Yuhan | Zhu, Qingyang | Zhao, Yingya | Wang, Ying | Ge, Wenzhen | Yang, Qing | Zhao, Yan | Wang, Pengpeng | Si, Jingyi | Luo, Ranran | Li, Jialin | Shi, Huijing | Zhang, Yunhui
Ambient fine particulate matter (PM2.5) pollution has been implicated in the development of hypertensive disorders of pregnancy. However, evidence on the effects of PM2.5-derived chemical constituents on gestational blood pressure (BP) is limited, and the potential mechanisms underlying the association remain unclear. In this study, we repeated three consecutive 72-h personal air sampling and BP measurements in 215 pregnant women for 590 visits during pregnancy. Individual PM2.5 exposure level was assessed by gravimetric method and 28 PM2.5 chemical constituents were analyzed by ED-XRF method. Plasma biomarkers of endothelial function and inflammation were measured using multiplexed immunoassays. Robust multiple linear regression models were used to estimate the associations among personal PM2.5 exposure and chemical constituents, BP changes (compared with pre-pregnancy BP) and plasma biomarkers. Mediation analyses were performed to evaluate underlying potential pathways. Result showed that exposure to PM2.5 was significantly associated with increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) in the early second trimester. Meanwhile, elevated concentration of lead (Pb) constituent in PM2.5 was significant associated with increases in DBP and MAP after adjusting for PM2.5 total mass. PM2.5 and Pb constituent also presented positive associations with plasma biomarkers of endothelial function (ET-1, E-selectin, ICAM-1) and inflammation (IL-1β, IL-6, TNFα) significantly. After multiple adjustment, elevated ET-1 and IL-6 were significantly correlated with increased gestational BP, and respectively mediated 1.24%–25.06% and 7.01%–10.69% of the increased BP due to PM2.5 and Pb constituent exposure. In conclusion, our results suggested that personal exposure to PM2.5 and Pb constituent were significantly associated with increased BP during pregnancy, and the early second trimester might be the sensitive window of PM2.5 exposure. The endothelial dysfunction and elevated inflammation partially mediated the effect of PM2.5 and Pb constituent on BP during pregnancy.
اظهر المزيد [+] اقل [-]