خيارات البحث
النتائج 1 - 9 من 9
Elevated pH-mediated mitigation of aluminum-toxicity in sweet orange (Citrus sinensis) roots involved the regulation of energy-rich compounds and phytohormones
2022
Wu, Bi-Sha | Lai, Yin-Hua | Peng, Ming-Yi | Ren, Qian-Qian | Lai, Ning-Wei | Wu, Jincheng | Huang, Zeng-Rong | Yang, Lin-Tong | Chen, Li-Song
For the first time, we used targeted metabolome to investigate the effects of pH-aluminum (Al) interactions on energy-rich compounds and their metabolites (ECMs) and phytohormones in sweet orange (Citrus sinensis) roots. The concentration of total ECMs (TECMs) was reduced by Al-toxicity in 4.0-treated roots, but unaffected significantly in pH 3.0-treated roots. However, the concentrations of most ECMs and TECMs were not lower in pH 4.0 + 1.0 mM Al-treated roots (P4AR) than in pH 3.0 + 1.0 mM Al-treated roots (P3AR). Increased pH improved the adaptability of ECMs to Al-toxicity in roots. For example, increased pH improved the utilization efficiency of ECMs and the conversion of organic phosphorus (P) from P-containing ECMs into available phosphate in Al-treated roots. We identified upregulated cytokinins (CKs), downregulated jasmonic acid (JA), methyl jasmonate (MEJA) and jasmonates (JAs), and unaltered indole-3-acetic acid (IAA) and salicylic acid (SA) in P3AR vs pH 3.0 + 0 mM Al-treated roots (P3R); upregulated JA, JAs and IAA, downregulated total CKs, and unaltered MEJA and SA in P4AR vs pH 4.0 + 0 mM Al-treated roots (P4R); and upregulated CKs, downregulated JA, MEJA, JAs and SA, and unaltered IAA in P3AR vs P4AR. Generally viewed, raised pH-mediated increments of JA, MEJA, total JAs, SA and IAA concentrations and reduction of CKs concentration in Al-treated roots might help to maintain nutrient homeostasis, increase Al-toxicity-induced exudation of organic acid anions and the compartmentation of Al in vacuole, and reduce oxidative stress and Al uptake, thereby conferring root Al-tolerance. In short, elevated pH-mediated mitigation of root Al-stress involved the regulation of ECMs and phytohormones.
اظهر المزيد [+] اقل [-]Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils
2022
Chen, Zhiqin | Liu, Qizhen | Chen, Shaoning | Zhang, Shijun | Wang, Mei | Mujtaba Munir, Mehr Ahmed | Feng, Ying | He, Zhenli | Yang, Xiaoe
Plant growth regulators (PGRs) assisted phytoextraction was investigated as a viable phytoremediation technology to increase the phytoextraction efficiency in contaminated soils. This study aimed to evaluate the cadimum (Cd)/lead (Pb)/zinc (Zn) phytoextraction efficiency by a hyperaccumulator Sedum alfredii Hance (S. alfredii) treated with 9 PGRs, including indole-3-acetic acid (IAA), gibberellin (GA₃), cytokinin (CKs), abscisic acid (ABA), ethylene (ETH), brassinosteroid (BR), salicylic acid (SA), strigolactones (SL) and jasmonic acid (JA), in slightly or heavily contaminated (SC and HC, respectively) soil. Results demonstrated that PGRs were able to improve S. alfredii biomass, the most significant increases were observed in GA₃ and SL for HC soil, while for SC soil, IAA and BR exhibited positive effects. The levels of Cd, Pb and Zn in the shoots of S. alfredii treated with ABA and SL were noticeably greater than in the CK treatment in HC soil, while the uptake of metals were increased by IAA and CKs in SC soil. Combined with the results of biomass and metal contents in shoots, we found that ABA showed the highest Cd removal efficiency and the maximum Pb and Zn removal efficiency was observed with GA₃, which was 62.99%, 269.23%, and 41.18%, respectively higher than the control in HC soil. Meanwhile, compared to control, the maximum removal efficiency of Cd by IAA treatment (52.80%), Pb by JA treatment (165.1%), and Zn by BR treatment (44.97%) in the SC soil. Overall, our results suggested that these PGRs, especially, ABA, SL, IAA, BR and GA₃ had great potential in improving phytoremediation efficiency of S. alfredii grown in contaminated soils.
اظهر المزيد [+] اقل [-]Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules
2022
Mukarram, Mohammad | Petrik, Peter | Mushtaq, Zeenat | Khan, M. Masroor A. | Gulfishan, Mohd | Lux, Alexander
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca²⁺, K⁺, Na⁺, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
اظهر المزيد [+] اقل [-]Application of sulphate and cytokinin in assisted arsenic phytoextraction by industrial Cannabis sativa L
2021
Grifoni, Martina | Rosellini, Irene | Petruzzelli, Gianniantonio | Pedron, Francesca | Franchi, Elisabetta | Barbafieri, Meri
Phytoextraction is currently investigated to effectively remediate soil contaminated by metals and provide highly competitive biomass for energy production. This research aimed to increase arsenic (As) removal from contaminated soil using industrial Cannabis sativa L., a suitable energy crop for biofuel production. Assisted phytoextraction experiments were conducted on a microcosm scale to explore the ability of two friendly treatments, sodium sulphate (SO₄) and exogenous cytokinin (CK), in increasing As phytoextraction efficiency. The results showed that the treatments significantly increased As phytoextraction. Cytokinin was the most effective agent for effectively increasing translocation and the amount of As in aerial parts of C. sativa. In fact, the concentration of As in the shoots of CK-treated plants increased by 172% and 44% compared to untreated and SO₄-treated plants, respectively. However, the increased As amount accumulated in C. sativa tissues due to the two treatments negatively affected plant growth. Arsenic toxicity caused a significant decrease in aerial C. sativa biomass treated with CK and SO₄ of about 32.7% and 29.8% compared to untreated plants, respectively. However, for our research purposes, biomass reduction has been counterbalanced by an increase in As phytoextraction, such as to consider C. sativa and CK an effective combination for the remediation of As-contaminated soils. Considering that C. sativa has the suitable characteristics to provide valuable resources for bioenergy production, our work can help improve the implementation of a sustainable management model for As contaminated areas, such as phytoremediation coupled with bioenergy generation.
اظهر المزيد [+] اقل [-]Brassinosteroids as a multidimensional regulator of plant physiological and molecular responses under various environmental stresses
2021
Basit, Farwa | Liu, Jiaxin | An, Jianyu | Chen, Min | He, Can | Chu, Xiaobo | Li, Zhan | Hu, Jin | Guan, Yajing
Biotic and abiotic stresses, especially heavy metal toxicity, are becoming a big problem in agriculture, which pose serious threats to crop production. Plant hormones have recently been used to develop stress tolerance in a variety of plants. Brassinosteroids (BRs) are the sixth class of plant steroid hormones, with pleiotropic effects on plants. Exogenous application of BRs to boost plant tolerance mechanisms to various stresses has been a major research focus. Numerous studies have revealed the role of these steroidal hormones in the up-regulation of stress-related resistance genes, as well as their interactions with other metabolic pathways. BRs interact with other phytohormones such as auxin, cytokinin, ethylene, gibberellin, jasmonic acid, abscisic acid, salicylic acid, and polyamines to regulate a variety of physiological and developmental processes in plants. BRs regulate expressions of many BR-inducible genes by activating the brassinazole-resistant 1 (BZR1)/BRI1-EMS suppressor 1 (BES1) complex. Moreover, to improve plant development under a variety of stresses, BRs regulate antioxidant enzyme activity, chlorophyll concentration, photosynthetic capability, and glucose metabolism. This review will provide insights into the mechanistic role and actions of brassinosteroids in plants in response to various stresses.
اظهر المزيد [+] اقل [-]Efficacy of two seaweeds dry mass in bioremediation of heavy metal polluted soil and growth of radish (Raphanus sativus L.) plant
2021
Ahmed, Dalia Abd El-Azeem | Gheda, Saly Farouk | Ismail, Gehan Ahmed
This study investigated the effect of Ulva fasciata and Sargassum lacerifolium seaweeds as heavy metal remediators for soil and on the growth of radish (Raphanus sativus L.). The soil was inoculated by dry biomass of each seaweed alone and by their mixture. Seaweeds inoculation increased the organic matter content, clay-size fraction, and nutrients in the soil. Seaweeds mixture treatment caused a significant reduction in the contents of Pb, Cu, Zn and Ni in the soil samples and reduced them to the tolerable limits (40.2, 49.3, 43.8 and 1.1 mg kg⁻¹, respectively), while Cd, Cr, Fe, and Mn contents were closely decreased to the tolerable limits. Biosorption of soil heavy metals by seaweeds decreased the bioaccumulated concentrations of metals in radish plant roots and/or translocated to its shoots compared to control. For seaweeds mixture-treated soil, cultivated radish roots were able to phyto-extract Cd, Cu, Cr, and Ni from the soil (bioaccumulation factor values > 1) of 7.45, 1.18, 3.13, and 26.6, respectively. Seaweeds inoculation promoted the growth of cultivated radish and improved the germination percentage and the morphological and biochemical growth parameters compared to control plants. The achieved soil remediation by dried seaweeds might be due to their efficient metal biosorption capacity due to the existence of active functional groups on their cell wall surfaces. Increased growth observed in radish was as a result of nutrients and growth hormones (gibberellins, indole acetic acid, and cytokinins) present in dried seaweeds. This study shows the efficiency of seaweeds as eco-friendly bioremediators for controlling soil pollution.
اظهر المزيد [+] اقل [-]Phytohormones enhanced drought tolerance in plants: a coping strategy
2018
Ullah, Abid | Manghwar, Hakim | Shaban, Muhammad | Khan, Aamir Hamid | Akbar, Adnan | ʻAlī, ʻUs̲mān | Ali, Ehsan | Shah, Fahad
Drought stress is a severe environmental constraint among the emerging problems. Plants are highly vulnerable to drought stress and a severe decrease in yield was recorded in the last few decades. So, it is highly desirable to understand the mechanism of drought tolerance in plants and consequently enhance the tolerance against drought stress. Phytohormones are known to play vital roles in regulating various phenomenons in plants to acclimatize to varying drought environment. Abscisic acid (ABA) is considered the main hormone which intensifies drought tolerance in plants through various morpho-physiological and molecular processes including stomata regulation, root development, and initiation of ABA-dependent pathway. In addition, jasmonic acid (JA), salicylic acid (SA) ethylene (ET), auxins (IAA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs) are also very important phytohormones to congregate the challenges of drought stress. However, these hormones are usually cross talk with each other to increase the survival of plants in drought conditions. On the other hand, the transgenic approach is currently the most accepted technique to engineer the genes responsible for the synthesis of phytohormones in drought stress response. Our present review highlights the regulatory circuits of phytohormones in drought tolerance mechanism.
اظهر المزيد [+] اقل [-]An arbuscular mycorrhizal fungus ameliorates plant growth and hormones after moderate root damage due to simulated coal mining subsidence: a microcosm study
2019
Bi, Yinli | Xiao, Li | Sun, Jinhua
Arbuscular mycorrhizal fungi (AMF) are obligate plant root symbionts delivering a range of benefits to the host plant such as improved nutrient acquisition and resistance to pathogens and abiotic stress. However, whether they can enhance the function of plant root systems damaged due to subsidence caused by excessive coal mining has not been well explored. In the present study, we investigated the effects of AMF using Funneliformis mosseae (FM) as the test fungus on maize (Zea mays L.) growth and hormone levels under different levels of root damage stress by simulating mining subsidence. The results show that plants treated with FM had more shoots, roots, mycorrhizal colonization and higher hyphal density than those without FM under the same simulated mining-induced subsidence conditions. In addition, plants treated with FM also possessed higher N, P, K, Ca, and Mg contents in the shoots and the roots and higher indole-3-acetic acid, gibberellin (GA), and cytokinin (CTK) contents in the roots, indicating that the mycorrhizal association promoted plant biomass and nutrient uptake. FM treatment was no longer beneficial when root damage due to mining-induced subsidence affected more than half of the roots. Soil SOC, AK, and TG were identified as key factors affecting GA, CTK, IAA, and ABA, and AMF can alter plant hormones directly via the hyphae and indirectly by altering soil physicochemical properties under root damage stress. Overall, our results provide baseline data for assessing the biological reclamation effects of AMF on coal mining-induced subsidence.
اظهر المزيد [+] اقل [-]Low-temperature stress: is phytohormones application a remedy?
2017
Khan, Tanveer Alam | Fariduddin, Qazi | Yusuf, Mohammad
Among the various abiotic stresses, low temperature is one of the major environmental constraints that limit the plant development and crop productivity. Plants are able to adapt to low-temperature stress through the changes in membrane composition and activation of reactive oxygen scavenging systems. The genetic pathway induced due to temperature downshift is based on C-repeat-binding factors (CBF) which activate promoters through the C-repeat (CRT) cis-element. Calcium entry is a major signalling event occurring immediately after a downshift in temperature. The increase in the level of cytosolic calcium activates many enzymes, such as phospholipases and calcium dependent-protein kinases. MAP-kinase module has been shown to be involved in the cold response. Ultimately, the activation of these signalling pathways leads to changes in the transcriptome. Several phytohormones, such as abscisic acid, brassinosteroids, auxin, salicylic acid, gibberellic acid, cytokinins and jasmonic acid, have been shown to play key roles in regulating the plant development under low-temperature stress. These phytohormones modulate important events involved in tolerance to low-temperature stress in plants. Better understanding of these events and genes controlling these could open new strategies for improving tolerance mediated by phytohormones.
اظهر المزيد [+] اقل [-]