خيارات البحث
النتائج 1 - 10 من 138
Mechanism of biochar functional groups in the catalytic reduction of tetrachloroethylene by sulfides
2022
Yang, Yadong | Piao, Yunxian | Wang, Ruofan | Su, Yaoming | Qiu, Jinrong | Liu, Na
In recent years, biochar has become of considerable interest for environmental applications, it can be used as a catalyst for sulfides reduction of perchloroethylene, but the crucial role of biochar properties played in catalyzing dechlorination remained ambiguous investigation. To pinpoint the critical functional groups, the modified biochars were respectively produced by HNO₃, KOH and H₂O₂ with similar dimensional structures but different functional groups. Combined with the adsorption and catalytic results of different biochars, the acid-modified biochar had the best catalytic performance (99.9% removal) due to the outstanding specific surface area and ample functional groups. According to characterization and DFT results, carboxyl and pyridine nitrogen exhibited a positive correlation with the catalytic rate, indicating that their contribution to catalytic performance. Customizing biochar with specific functional groups removed depth demonstrated that the carboxyl was essential component. Further, alkaline condition was conducive to catalytic reduction, while tetrachloroethylene cannot be reduced under acidic conditions, because HS⁻ and S²⁻ mainly existed in alkaline environment and the sulfur-containing nucleophilic structure formed with biochar was more stable under this condition. Overall, this study opens new perspectives for in situ remediation by biochar in chlorinated olefin polluted anoxic environment and promotes our insight of modifying for biochar catalyst design.
اظهر المزيد [+] اقل [-]Non-target screening of micropollutants and transformation products for assessing AOP-BAC treatment in groundwater
2022
Tisler, Selina | Tüchsen, Peter L. | Christensen, Jan H.
Standard monitoring programs give limited insight into groundwater status, especially transformation products (TPs) formed by natural processes or advanced oxidation processes (AOP), are normally underrepresented. In this study, using suspect and non-target screening, we performed a comprehensive analysis of groundwater before and after AOP by UV/H₂O₂ and consecutively installed biological activated carbon filters (BAC). By non-target screening, up to 413 compounds were detected in the groundwater, with an average 70% removal by AOP. However, a similar number of compounds were formed during the process, shown in groundwater from three waterworks. The most polar compounds were typically the most stable during the AOP. A subsequent BAC filter showed removal of 95% of the TPs, but only 46% removal of the AOP remaining precursors. The BAC removal for polar compounds was highly dependent on the acidic and basic functional groups of the molecules. 49 compounds of a wide polarity range could be identified by supercritical fluid chromatography (SFC) and liquid chromatography (LC) with high resolution mass spectrometry (HRMS); of these, 29 compounds were already present in the groundwater. To the best of our knowledge, five compounds have never been reported before in groundwater (4-chlorobenzenesulfonic acid, dibutylamine, N-phenlybenzenesulfonamide, 2-(methylthio)benzothiazole and benzothiazole-2-sulfonate). A further five rarely reported compounds are reported for the first time in Danish groundwater (2,4,6-trichlorophenol, 2,5-dichlorobenzenesulfonic acid, trifluormethansulfonic acid, pyrimidinol and benzymethylamine). Twenty of the identified compounds were formed by AOP, of which 10 have never been reported before in groundwater. All detected compounds could be related to agricultural and industrial products as well as artificial sweeteners. Whereas dechlorination was a common AOP degradation pathway for chlorophenols, the (ultra-) short chain PFAs showed no removal in our study. We prioritized 11 compounds as of concern, however, the toxicity for many compounds remains unknown, especially for the TPs.
اظهر المزيد [+] اقل [-]Hexachloroethane dechlorination in sulfide-containing aqueous solutions catalyzed by nitrogen-doped carbon materials
2021
Liu, Na | Hu, Qing | Wang, Chao | Tong, Lizhi | Weng, Chih-Huang | Ding, Longzhen
This study demonstrated that nitrogen-doped carbon materials (NCMs) could effectively catalyze the chlorine elimination process in hexachloroethane (HCA) declorination in sulfide-containing environments for the first time. The kₒbₛ values of HCA dechlorination by sulfide in the presence of 10 mg/L NCMs were higher than that of no mediator at pH 7.3 by one or two orders of magnitude. The catalytic capabilities of NCMs on HCA dechlorination were evident in common ranges of natural pH (5.3–8.9) and it could be accelerated by the increase of pH but be suppressed by the presence of dissolved humic acid. Moreover, NCMs exhibited much better catalytic capability on HCA dechlorination compared to the carbon materials, mainly owing to the combined contributions of pyridine N, including enhanced nucleophilic attack to HCA molecule by generating newborn C–S–S and activation of HCA molecule by elongating C–Cl bonds. The functions of pyridine N in micron-sized NCMs with mesopores were better than in nano-sized NCMs on HCA dechlorination. These findings displayed the potential of NCMs, when released into sulfide-containing environments, may significantly increase the dechlorination of chlorinated aliphatic hydrocarbons.
اظهر المزيد [+] اقل [-]Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes
2021
Bouzid, Iheb | Maire, Julien | Laurent, Fabien | Broquaire, Mathias | Fatin-Rouge, Nicolas
Xanthan gels were assessed to control the reductive dechlorination of hexachlorocyclohexanes (HCHs) and trichlorobenzenes (TCBs) in a strong permeability contrast and high velocity sedimentary aquifer. An alkaline degradation was selected because of the low cost of NaOH and Ca(OH)₂. The rheology of alkaline xanthan gels and their ability to deliver alkalinity homogeneously, while maintaining the latter, were studied. Whereas the xanthan gels behaved like non-Newtonian shear-thinning fluids, alkalinity and Ca(OH)₂ microparticles had detrimental effects, yet, the latter decreased with the shear-rate. Breakthrough curves for the NaOH and Ca(OH)₂ in xanthan solutions, carried out in the lowest permeability soil (9.9 μm²), demonstrated the excellent transmission of alkalinity, while moderate pressure gradients were applied. Injection velocities ranging from 1.8 to 3.8 m h⁻¹ are anticipated in the field, given the permeability range from 9.9 to 848.7 μm². Despite a permeability contrast of 8.7 in an anisotropic aquifer model, the NaOH and the Ca(OH)₂ both in xanthan gels spread only 5- and 7-times faster in the higher permeability zone, demonstrating that the delivery was enhanced. Moreover, the alkaline gels which were injected into a high permeability layer under lateral water flow, showed a persistent blocking effect and longevity (timescale of weeks), in contrast to the alkaline solution in absence of xanthan. Kinetics of alkaline dechlorination carried out on the historically contaminated soil, using the Ca(OH)₂ suspension in xanthan solution, showed that HCHs were converted in TCBs by dehydrodechlorination, whereas the latter were then degraded by reductive hydrogenolysis. Degradation kinetics were achieved within 30 h for the major and most reactive fraction of HCHs.
اظهر المزيد [+] اقل [-]Heterologous expression of bacterial cytochrome P450 from Microbacterium keratanolyticum ZY and its application in dichloromethane dechlorination
2021
Hu, Jun | Zhang, Yan | Wu, Yuexin | Zheng, Jiajun | Yu, Zhiliang | Qian, Haifeng | Yu, Jianming | Cheng, Zhuowei | Chen, Jianmeng
Dichloromethane (DCM) is a volatile halogenated hydrocarbon with teratogenic, mutagenic and carcinogenic effects. Biodegradation is generally regarded as an effective and economical approach of pollutant disposal. In this study, a novel strain was isolated and its cytochrome P450 was heterologously expressed for DCM degradation. The isolate, Microbacterium keratanolyticum ZY, was characterized as a Gram-positive, rod-shaped and flagella-existed bacterium without spores (GenBank No. SUB8814364; CCTCC M 2019953). After successive whole-genome sequencing, assembly and annotation, eight identified functional genes (encoding cytochrome P450, monooxygenase, dehalogenase and hydrolase) were successfully cloned and expressed in Escherichia coli BL21 (DE3). The recombinant strain expressing cytochrome P450 presented the highest degradation efficiency (90.6%). Moreover, the specific activity of the recombinant cytochrome P450 was more than 1.2 times that of the recombinant dehalogenase (from Methylobacterium rhodesianum H13) under their optimum conditions. The kinetics of DCM degradation by recombinant cytochrome P450 was well fitted with the Haldane model and the value of maximum specific degradation rate was determined to be 0.7 s⁻¹. The DCM degradation might occur through successive hydroxylation, dehydrohalogenation, dechlorination and oxidation to generate gem-halohydrin, formyl chloride, formaldehyde and formic acid. The study helps to comprehensively understand the DCM dechlorination process under the actions of bacterial functional enzymes (cytochrome P450 and dehalogenase).
اظهر المزيد [+] اقل [-]Innovative mycoremediation technique for treating unsterilized PCDD/F-contaminated field soil and the exploration of chlorinated metabolites
2021
Kaewlaoyoong, Acharee | Chen, Jenq-Renn | Cheng, Chih-Yu | Lin, Chitsan | Cheruiyot, Nicholas Kiprotich | Sriprom, Pongsert
Mycoremediation of unsterilized PCDD/F-contaminated field soil was successfully demonstrated by solid-state fermentation coupled with Pleurotus pulmonarius utilizing a patented incubation approach. The experiments were carried out in four setups with two as controls. The contaminated soil was homogenously mixed with solid inocula, 1:0.5 dry w/w, resulting in an initial concentration of 4432 ± 623 ng WHO-TEQ kg⁻¹. After a 30-day incubation under controlled conditions, the overall removal (approx. 60%) was non-specific. The removal was attributed to degradation by extracellular ligninolytic enzymes and uptake into the fruiting tissue (~110 ng WHO-TEQ kg⁻¹ of mushroom). Furthermore, less recalcitrant chlorinated metabolites were found, implying ether bond cleavage and dechlorination happened during the mycoremediation. These metabolites resulted from the complex interaction between P. pulmonarius and the indigenous microbes from the unsterilized soil. This study provides a new step toward scaling up this mycoremediation technique to treat unsterilized PCDD/F-contaminated field soil.
اظهر المزيد [+] اقل [-]Influence of non-dechlorinating microbes on trichloroethene reduction based on vitamin B12 synthesis in anaerobic cultures
2020
Wen, Li-Lian | Li, Yaru | Zhu, Lizhong | Zhao, He-Ping
In this study, the YH consortium, an ethene-producing culture, was used to evaluate the effect of vitamin B₁₂ (VB₁₂) on trichloroethene (TCE) dechlorination by transferring the original TCE-reducing culture with or without adding exogenous VB₁₂. Ultra-high performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) was applied to detect the concentrations of VB₁₂ and its lower ligand 5,6-dimethylbenzimidazole (DMB) in the cultures. After three successive VB₁₂ starvation cycles, the dechlorination of TCE stopped mostly at cis-dichloroethene (cDCE), and no ethene was found; methane production increased significantly, and no VB₁₂ was detected. Results suggest that the co-cultured microbes may not be able to provide enough VB₁₂ as a cofactor for the growth of Dehalococcoides in the YH culture, possibly due to the competition for corrinoids between Dehalococcoides and methanogens. The relative abundances of 16 S rRNA gene of Dehalococcoides and reductive dehalogenase genes tceA or vcrA were lower in the cultures without VB₁₂ compared with the cultures with VB₁₂. VB₁₂ limitation changed the microbial community structures of the consortia. In the absence of VB₁₂, the microbial community shifted from dominance of Chloroflexi to Proteobacteria after three consecutive VB₁₂ starvation cycles, and the dechlorinating genus Dehalococcoides declined from 42.9% to 13.5%. In addition, Geobacter, Clostridium, and Desulfovibrio were also present in the cultures without VB₁₂. Furthermore, the abundance of archaea increased under VB₁₂ limited conditions. Methanobacterium and Methanosarcina were the predominant archaea in the culture without VB₁₂.
اظهر المزيد [+] اقل [-]Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils
2020
Feng, Jiayin | Shentu, Jue | Zhu, Yanjie | Tang, Caixian | He, Yan | Xu, Jianming
Plant-specific root-microbe-soil interactions play an indisputable role in microbial adaptation to environmental stresses. However, the assembly of plant rhizosphere microbiomes and their feedbacks in modification of pollution alleviation under organochlorine stress condition is far less clear. This study examined the response of root-associated bacterial microbiomes to lindane pollution and compared the dissipation of lindane in maize-cultivated dry soils and rice-cultivated flooded soils. Results showed that lindane pollution dramatically altered the microbial structure in the rhizosphere soil of maize but had less influence on the microbial composition in flooded treatments regardless of rice growth, when the reductive dechlorination of lindane was actively coupled with natural redox processes under anaerobic conditions. After 30 days of plant growth, lindane residues dissipated much faster in anaerobic than in aerobic environments, with only 1.08 mg kg⁻¹ lindane remaining in flooded control compared to 12.79 mg kg⁻¹ in dry control soils. Compared to the corresponding unplanted control, maize growth significantly increased, but rice growth slightly decreased the dissipation of lindane. Our study suggests that opposite impacts would lead to the self-purification of polluted soils during the growth of xerophytic maize and hygrocolous rice. This was attributed to the contrasting belowground micro-ecological processes regarding protection of root tissues and thereby assembly of rhizosphere microbiomes shaped by the xerophytic and hygrocolous crops under different water managements, in response to lindane pollution.
اظهر المزيد [+] اقل [-]Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain)
2019
Blázquez-Pallí, Natàlia | Rosell, Mónica | Varias, Joan | Bosch, Marçal | Soler, Albert | Vicent, Teresa | Marco-Urrea, Ernest
The bioremediation potential of an aquifer contaminated with tetrachloroethene (PCE) was assessed by combining hydrogeochemical data of the site, microcosm studies, metabolites concentrations, compound specific-stable carbon isotope analysis and the identification of selected reductive dechlorination biomarker genes. The characterization of the site through 10 monitoring wells evidenced that leaked PCE was transformed to TCE and cis-DCE via hydrogenolysis. Carbon isotopic mass balance of chlorinated ethenes pointed to two distinct sources of contamination and discarded relevant alternate degradation pathways in the aquifer. Application of specific-genus primers targeting Dehalococcoides mccartyi species and the vinyl chloride-to-ethene reductive dehalogenase vcrA indicated the presence of autochthonous bacteria capable of the complete dechlorination of PCE. The observed cis-DCE stall was consistent with the aquifer geochemistry (positive redox potentials; presence of dissolved oxygen, nitrate, and sulphate; absence of ferrous iron), which was thermodynamically favourable to dechlorinate highly chlorinated ethenes but required lower redox potentials to evolve beyond cis-DCE to the innocuous end product ethene. Accordingly, the addition of lactate or a mixture of ethanol plus methanol as electron donor sources in parallel field-derived anoxic microcosms accelerated dechlorination of PCE and passed cis-DCE up to ethene, unlike the controls (without amendments, representative of field natural attenuation). Lactate fermentation produced acetate at near-stoichiometric amounts. The array of techniques used in this study provided complementary lines of evidence to suggest that enhanced anaerobic bioremediation using lactate as electron donor source is a feasible strategy to successfully decontaminate this site.
اظهر المزيد [+] اقل [-]Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions
2018
Guo, Peng | Zhang, Chunfang | Wang, Yi | Yu, Xinwei | Zhang, Zhichao | Zhang, Dongdong
This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2′,4,4′,5,5′- hexachlorobiphenyl (PCB₁₅₃) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB₁₅₃ dechlorination activity (1.03 μM PCB₁₅₃ removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms’ metabolisms.
اظهر المزيد [+] اقل [-]