خيارات البحث
النتائج 1 - 10 من 54
Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada
2007
Mayer, T. | Bennie, D. | Rosa, F. | Rekas, G. | Palabrica, V. | Schachtschneider, J.
Occurrence and fate of alkylphenols (APs), known endocrine disruptors, were investigated in a Great Lakes coastal wetland, Cootes Paradise, ON. The wetland, which receives discharges from a Wastewater Treatment Plant (WTP) and several Combined Sewer Overflows (CSOs), is an important spawning ground for fish and crucial habitat for other fauna. Elevated concentrations of nonylphenol ethoxylates (NPEs) and their degradation product nonylphenol (NP) were found in water and sediment samples near the sources. Since transfer of APs through the food chain is of concern, we compared their concentrations in invertebrates from clean and contaminated sites. The results reveal transfer of alkylphenolics from sediments to biota and their accumulation in the invertebrate tissue, particularly the highly hydrophobic 4-NP, whose concentrations ranged from 1.9 to 6.3 μg g-1. To our knowledge, this is the first study to evaluate AP concentrations in tissue of benthic invertebrates under real environmental conditions. Concentrations of alkylphenolic compounds in water, sediments and benthic invertebrates in a large coastal wetland and implications for trophic transfer.
اظهر المزيد [+] اقل [-]Microfiber release from different fabrics during washing
2019
Yang, Libiao | Qiao, Fei | Lei, Kun | Li, Huiqin | Kang, Yu | Cui, Song | An, Lihui
Microfiber is a subgroup of microplastics and accounts for a large proportion of microplastics in aquatic environment, especially in municipal effluents. The purpose of the present study was to quantify microfiber shedding from three most populate synthetic textile fabrics: polyester, polyamide, and acetate fabrics. The results showed that more microfibers were released after washing with a pulsator laundry machine than a platen laundry machine. The greatest number of microfibers was released from acetate fabric, which was up to 74,816 ± 10,656 microfibers/m2 per wash, although microfibers were shed from all materials. Moreover, an increasing trend was found in the number of microfibers shedding from synthetic fabrics with the washing temperature increasing, and greater microfiber release occurred when washing fabrics with detergent rather than with water alone. The lint filter bag equipped with the pulsator laundry machine retained the longer microfibers (>1000 μm), but not the shorter microfibers (<500 μm) instead of releasing into the drainage system. Our data suggested that microfibers released during washing of synthetic fabrics may be an important source of microfibers in aquatic environment due to the increasing production and use of synthetic fabrics globally. Thus, more efficient filtering bags or other technologies in household washing machines should be developed to prevent and reduce the release of microfibers from domestic washing.
اظهر المزيد [+] اقل [-]Genotoxic effects of 4-nonylphenol and Cyproterone Acetate on Rana catesbeiana (anura) tadpoles and juveniles
2019
Gregorio, L.S. | Franco-Belussi, L. | De Oliveira, C.
Genotoxic analyses are commonly used in ecotoxicological studies as early biomarkers to investigate the potential effects of environmental contaminants on biological models. Several pollutants can induce DNA damage and, therefore, counting micronuclei and other nuclear abnormalities are efficient tools to evaluate genotoxicity. Some pollutants such as 4-nonylphenol (NP), a detergent used mainly in industries, and Cyproterone Acetate (CPA), an antiandrogenic medicine, have already shown genotoxic effects on some vertebrates. However, although amphibians are considered bioindicators of environmental quality and their populations are declining worldwide, the effects of these compounds on anurans are not yet known and, therefore, we believe that it is important to investigate such effects on anurans. Since water contamination is one of the ultimate causes of amphibian decline, ecotoxicological studies are important to discuss the appropriate solutions to avoid species extinction. Thus, this study investigates the genotoxic effects on Rana catesbeiana tadpoles and juveniles after being exposed to 1, 10 and 100 μg/L NP and 0.025, 0.25 and 2.5 ng/L CPA, by counting the nuclear abnormalities after exposure. The laboratory experiments lasted 28 days. The experimental conditions were the same except for the water volume since tadpoles and juveniles exhibit different habits at different developmental stages. Compared to juveniles, tadpoles were more susceptible to both compounds as indicated by the increased nuclear abnormalities observed in the highest NP concentration and all tested CPA concentrations. The juveniles, on the other hand, responded only to the two highest CPA concentrations. We concluded that CPA, even at very low concentrations, is extremely harmful to both anuran developmental stages and, particularly, to tadpoles. The significant effects observed on tadpoles is an important outcome of this study since 100 μg/L or higher NP concentrations are frequently detected in the environment.
اظهر المزيد [+] اقل [-]Evaluation of microplastic release caused by textile washing processes of synthetic fabrics
2018
De Falco, Francesca | Gullo, Maria Pia | Gentile, Gennaro | Di Pace, Emilia | Cocca, Mariacristina | Gelabert, Laura | Brouta-Agnésa, Marolda | Rovira, Angels | Escudero, Rosa | Villalba, Raquel | Mossotti, Raffaella | Montarsolo, Alessio | Gavignano, Sara | Tonin, Claudio | Avella, Maurizio
A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment.
اظهر المزيد [+] اقل [-]Pretreatment with propidium monoazide/sodium lauroyl sarcosinate improves discrimination of infectious waterborne virus by RT-qPCR combined with magnetic separation
2018
Lee, Hae-Won | Lee, Hee-Min | Yoon, So-Ra | Kim, Sung Hyun | Ha, Ji-Hyoung
RT-qPCR allows sensitive detection of viral particles of both infectious and noninfectious viruses in water environments, but cannot discriminate non-infectious from infectious viruses. In this study, we aimed to optimize RT-qPCR-based detection of chlorine-inactivated human norovirus (NoV) and pepper mild mottle virus (PMMoV) in suspension by pretreatment with an optimal combination of a monoazide and a detergent that can efficiently penetrate damaged viral capsids. Four methods were compared to determine the efficacy of chlorine disinfection (at 1, 3, and 5 min mg/L): (A) RT-qPCR alone, (B) RT-qPCR assay preceded by magnetic bead separation for enrichment of viral particles (MBS-RT-qPCR), (C) MBS-RT-qPCR assay with pretreatment with propidium monoazide (PMA-MBS-RT-qPCR), and (D) PMA-MBS-RT-qPCR assay with pretreatment with sodium lauroyl sarcosinate (INCI-PMA-MBS-RT-qPCR). On the basis of a PMA optimization assay, 200 and 300 μM PMA were used in subsequent experiments for NoV GII.4 and PMMoV, respectively. Optimal INCI concentrations, having minimal influence on NoV GII.4 and PMMoV, were found to be 0.5% and 0.2% INCI, respectively. For NoV GII.4, there were significant differences (P < 0.05) in log₁₀ genome copies between the PMA-treated and the INCI + PMA-treated samples (log₁₀ genome copies differed by 1.11 and 0.59 log₁₀ for 3 and 5 min mg/L of chlorine, respectively). For PMMoV, INCI induced differences in log₁₀ genome copies of 0.92, 1.18, and 1.86, for 1, 3, and 5 min mg/L of chlorine, respectively. Overall, the results of this study indicate that an optimal combination of PMA and INCI could be very useful for evaluating disinfection methods in water treatment strategies.
اظهر المزيد [+] اقل [-]Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater
2017
Liang, Jieying | Ning, Xun-an | Kong, Minyi | Liu, Daohua | Wang, Guangwen | Cai, Haili | Sun, Jian | Zhang, Yaping | Lu, Xingwen | Yuan, Yong
Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% CODCr were removed following treatment at the four plants. The average concentration of Σ12PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ12PAEs in effluent of the four plants were >0.1, indicating that Σ12PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and CODCr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants.
اظهر المزيد [+] اقل [-]Impact of harbour, industry and sewage on the phosphorus geochemistry of a subtropical estuary in Brazil
2015
Berbel, Glaucia B.B. | Favaro, Deborah I.T. | Braga, Elisabete S.
The distribution of different forms of phosphorus in surface sediment from 17 sites were investigated by SEDEX method. The sites were divided into three sectors: Santos Channel (SC – influenced by harbour, fertilizers plants and phosphogypsum mountains), São Vicente Channel (SVC– domestic waste) and Santos Bay (SB – sewage outfall). The average percentage of each P fraction of the surface sediments in this region followed the sequence P–Fe (38%)>Porg (27%)>Pexch (13%)>Detrital – P (12%)>Auth – P (10%). Ptotal varied from 3.57 to 74.11μmolg−1 in both seasons. In SVC, Pexch ranged from 13% to 27% and Porg varied from 12% to 56%. These high percentages of Pexch/Ptotal (greater than 20%) may be related to low oxygen resulting from oxygen consumed by intensive organic matter decomposition as well as the salty water that leads to cation and anion flocculation. Also, the possibility of an influence related to the industrial source of Pexch is not ruled out. No significant seasonal differences were found among sites, except for sewage outfall, with changing in the grain size and hence, the P geochemistry. During the summer in the sewage outfall station, Porg represented 37% of Ptotal, which decreased to 13% in the winter. These results suggest that high percentages of organic phosphorus cannot be attributed only to autochthonous and allochthonous organic matter, but also to detergents and/or domestic waste. In contrast, spatial differences among sectors were observed, with the highest values of each fraction associated with sites near industrial and domestic waste activities.
اظهر المزيد [+] اقل [-]Characterization of fish hold effluent discharged from commercial fishing vessels into harbor waters
2014
Albert, Ryan J. | McLaughlin, Christine | Falatko, Debra
Fish hold effluent and the effluent produced from the cleaning of fish holds may contain organic material resulting from the degradation of seafood and cleaning products (e.g., soaps and detergents). This effluent is often discharged by vessels into near shore waters and, therefore, could have the potential to contribute to water pollution in bays and estuaries. We characterized effluent from commercial fishing vessels with holds containing refrigerated seawater, ice slurry, or chipped ice. Concentrations of trace heavy metals, wet chemistry parameters, and nutrients in effluent were compared to screening benchmarks to determine if there is a reasonable potential for effluent discharge to contribute to nonattainment of water quality standards. Most analytes (67%) exceeded their benchmark concentration and, therefore, may have the potential to pose risk to human health or the environment if discharges are in significant quantities or there are many vessels discharging in the same areas.
اظهر المزيد [+] اقل [-]Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation
2019
Zambrano, Marielis C. | Pawlak, Joel J. | Daystar, Jesse | Ankeny, Mary | Cheng, Jay J. | Venditti, Richard A.
The effect of fiber type (cotton, polyester, and rayon), temperature, and use of detergent on the number of microfibers released during laundering of knitted fabrics were studied during accelerated laboratory washing (Launder-Ometer) and home laundering experiments. Polyester and cellulose-based fabrics all shed significant amounts of microfibers and shedding levels were increased with higher water temperature and detergent use. Cellulose-based fabrics released more microfibers (0.2–4 mg/g fabric) during accelerated laundering than polyester (0.1–1 mg/g fabric). Using well-controlled aquatic biodegradation experiments it was shown that cotton and rayon microfibers are expected to degrade in natural aquatic aerobic environments whereas polyester microfibers are expected to persist in the environment for long periods of time.
اظهر المزيد [+] اقل [-]Toxicity of treated bilge water: The need for revised regulatory control
2017
Tiselius, Peter | Magnusson, Kerstin
Water accumulating in the bottom of ships (bilge water), contains a mixture of oil, detergents and other compounds from on board activities. To evaluate ecological effects of released bilge water the chemical composition and toxicity of treated bilge water from seven passenger ships was analysed. The oil content was below 15mgL−1, the threshold for legal discharge, in all but one ship. Still, significant reductions in feeding and reproduction of Acartia tonsa were found after 48h exposure in dilutions with 2.5–5% of bilge water. Mortality was significant at dilutions of 5–10% in 4 of the 5 bilge water samples. Surfactants were the most significant contributor to the toxicity on copepod vital rates and survival. Toxicity was also tested with Microtox where an EC50 was found at dilutions between 4.3% and 52%. The results show that ecological effects might occur also in diluted suspensions of bilge water.
اظهر المزيد [+] اقل [-]